中心在原点,焦点在X轴的椭圆,离心率e=√3/2,过p(2,1)
1.解:由题意得e=√3/2,所以c²=0.75a²,所以b²=0.25a²,所以设椭圆为x²+4y²=a&s...
1.解:由题意得e=√3/2,所以c²=0.75a²,所以b²=0.25a²,所以设椭圆为 x²+4y²=a², 因为线段AB的长等于圆的直径,所以直线AB必过P(2,1),设
直线AB为y-1=k(x-2),y-1=k(x-2)与x²+4y²=a²联立得(1+4k²)x²-4(4k²-2k)x
+4(2k-1)²=0,由题意可知P必为线段AB中点,设A(x1,y1),B(x2,y2),所以x1+x2
=4=4(4k²-2k)/(1+4k²),所以k=-(1/2),所以直线AB的方程是x+2y-4=0
2,解:由题1得y1+y2=2,x+2y-4=0 与x²+4y²=a²联立得8y²-8y+16-a²=0,AB²=[1+(-2)]*[(y1+y2)²-4y1*y2]=5*[4-(16-a²)/2]=(2√(5/2))²=10,所以a²=12,
b²=0.25a²=3,所以椭圆的方程为x²/12+y²/3=1 展开
直线AB为y-1=k(x-2),y-1=k(x-2)与x²+4y²=a²联立得(1+4k²)x²-4(4k²-2k)x
+4(2k-1)²=0,由题意可知P必为线段AB中点,设A(x1,y1),B(x2,y2),所以x1+x2
=4=4(4k²-2k)/(1+4k²),所以k=-(1/2),所以直线AB的方程是x+2y-4=0
2,解:由题1得y1+y2=2,x+2y-4=0 与x²+4y²=a²联立得8y²-8y+16-a²=0,AB²=[1+(-2)]*[(y1+y2)²-4y1*y2]=5*[4-(16-a²)/2]=(2√(5/2))²=10,所以a²=12,
b²=0.25a²=3,所以椭圆的方程为x²/12+y²/3=1 展开
1个回答
展开全部
1.解:由题意得e=√3/2,所以c²=0.75a²,所以b²=0.25a²,所以设椭圆为 x²+4y²=a², 因为线段AB的长等于圆的直径,所以直线AB必过P(2,1),设
直线AB为y-1=k(x-2),y-1=k(x-2)与x²+4y²=a²联立得(1+4k²)x²-4(4k²-2k)x
+4(2k-1)²=0,由题意可知P必为线段AB中点,设A(x1,y1),B(x2,y2),所以x1+x2
=4=4(4k²-2k)/(1+4k²),所以k=-(1/2),所以直线AB的方程是x+2y-4=0
2,解:由题1得y1+y2=2,x+2y-4=0 与x²+4y²=a²联立得8y²-8y+16-a²=0,AB²=[1+(-2)]*[(y1+y2)²-4y1*y2]=5*[4-(16-a²)/2]=(2√(5/2))²=10,所以a²=12,
b²=0.25a²=3,所以椭圆的方程为x²/12+y²/3=1
直线AB为y-1=k(x-2),y-1=k(x-2)与x²+4y²=a²联立得(1+4k²)x²-4(4k²-2k)x
+4(2k-1)²=0,由题意可知P必为线段AB中点,设A(x1,y1),B(x2,y2),所以x1+x2
=4=4(4k²-2k)/(1+4k²),所以k=-(1/2),所以直线AB的方程是x+2y-4=0
2,解:由题1得y1+y2=2,x+2y-4=0 与x²+4y²=a²联立得8y²-8y+16-a²=0,AB²=[1+(-2)]*[(y1+y2)²-4y1*y2]=5*[4-(16-a²)/2]=(2√(5/2))²=10,所以a²=12,
b²=0.25a²=3,所以椭圆的方程为x²/12+y²/3=1
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询