简单不等式证明

1、a、b属于正实数,证:1/a+1/b≥4/(a+b)2、a、b属于正实数,证:a²/b≥2a-b3、a、b属于实数,证:2(a²+b²)... 1、a、b属于正实数,证:1/a+1/b≥4/(a+b)
2、a、b属于正实数,证:a²/b≥2a-b
3、a、b属于实数,证:2(a²+b²)≥(a+b)²
4、a、b属于实数,证:(a/b)²≥2a/b-1
5、a、b属于实数,证:a/b+b/a≥2
展开
myjaniet
2010-10-29 · TA获得超过225个赞
知道答主
回答量:59
采纳率:0%
帮助的人:0
展开全部
1、 (a-b)²≥0
a²+b²-2ab≥0
a²+b²≥2ab
a²+b²+2ab≥4ab
(a+b)²≥4ab
∵ a, b都是正实数
∴ 在不等式两边同除以(a+b)ab,不等号方向不变。
即:(a+b)/ab≥4(a+b)
得:1/a+1/b≥4/(a+b)

2、 (a-b)²≥0
a²+b²-2ab≥0
a²≥2ab-b²
∵ a, b都是正实数
∴ 在不等式两边同除以b,不等号方向不变
得:a2/b≥2a-b

3、 (a-b)²≥0
a²+b²-2ab≥0
a²+b²≥2ab
2(a²+b²)≥a²+b²+2ab
2(a²+b²)≥(a+b)²

4、 (a-b)²≥0
a²+b²-2ab≥0
a²≥2ab-b²
不等号两边同除以b2
得:(a/b)²≥2a/b-1

5、 (a-b)²≥0
a²+b²-2ab≥0
a²+b²≥2ab
不等号两边同除以ab
得:a/b+b/a≥2
(注:第五题要附加一个条件:a、b同号,也即:a与b必须同时大于零或同时小于零)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式