已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-λf(x),试问,是否存在实数λ,使得G(x)

已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-λf(x),试问,是否存在实数λ,使得G(x)在(-∞,-1]上为减函数,并且在(-1,0)上... 已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-λf(x),试问,是否存在实数λ,使得G(x)在(-∞,-1]上为减函数,并且在(-1,0)上为增函数. 展开
 我来答
012rZv
2014-12-01 · TA获得超过350个赞
知道答主
回答量:120
采纳率:50%
帮助的人:114万
展开全部
g(x)=f[f(x)]=f(x2+1)=(x2+1)2+1=x4+2x2+2.
G(x)=g(x)-λf(x)=x4+2x2+2-λx2-λ=x4+(2-λ)x2+(2-λ),G(x1)-G(x2)=[x14+(2-λ)x12+(2-λ)]-[x24+(2-λ)x22+(2-λ)]=(x1+x2)(x1-x2)[x12+x22+(2-λ)]
由题设当x1<x2<-1时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)>1+1+2-λ=4-λ,
则4-λ≥0,λ≤4当-1<x1<x2<0时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)<1+1+2-λ=4-λ,
则4-λ≤0,λ≥4故λ=4.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式