如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB分别交OC于点E,交弧BC于点D,连结CD、OD,给出以下四
如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB分别交OC于点E,交弧BC于点D,连结CD、OD,给出以下四个结论:①S△AEC=2S△DEO;②AC=2CD...
如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB分别交OC于点E,交弧BC于点D,连结CD、OD,给出以下四个结论:①S△AEC=2S△DEO;②AC=2CD;③线段OD是DE与DA的比例中项;④2CD2=CE?AB.其中正确结论的序号是______.
展开
1个回答
展开全部
①∵AD平分∠CAB,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠BAD=∠ODA,
∴∠CAD=∠ODA,
∴AC∥OD,
∴△AEC∽△DEO,
过点E作EM⊥AC于点M,
∵AO=CO,AO⊥CO,
∴∠CAO=∠ACO=45°,
∴CM=ME,
∵AD平分∠CAB分别交OC于点E,EO⊥AO,EM⊥AC,
∴ME=EO,
∴CM=ME=EO,
∴CE=
CM=
EO,
∴CE:OE=
:1,
∴S△AEC=2S△DEO;故正确;
②过点O作OG⊥AC,
∴
=
,
∵AD平分∠CAB,
∴
=
,
∵半径OC⊥AB,
∴
=
,
∴
=
=
,
∴AG=CG=CD,
∴2CD>AC,
故错误;
③∵AD平分∠CAB交弧BC于点D,
∴∠DAB=∠CAD=
∠CAB=22.5°,
∴∠COD=45°,
∵AC∥DO,
∴∠CAD=∠ADO=22.5°,
∴△ADO是等腰三角形,
△DOE中,∠ADO=22.5°,∠EOD=45°,
∴△ADO和△DOE不相似,
∴线段OD不是DE与DA的比例中项,
故错误;
④∵AB是半圆直径,
∴OC=OD,
∴∠OCD=∠ODC=67.5°,
∵∠CAD=∠ADO=22.5°,
∴∠CDE=∠ODC-∠ADO=67.5°-22.5°=45°,
∴△CED∽△CDO,
∴CD:OC=CE:CD,
∴CD2=OC?CE=
∴∠CAD=∠BAD,
∵OA=OD,
∴∠BAD=∠ODA,
∴∠CAD=∠ODA,
∴AC∥OD,
∴△AEC∽△DEO,
过点E作EM⊥AC于点M,
∵AO=CO,AO⊥CO,
∴∠CAO=∠ACO=45°,
∴CM=ME,
∵AD平分∠CAB分别交OC于点E,EO⊥AO,EM⊥AC,
∴ME=EO,
∴CM=ME=EO,
∴CE=
2 |
2 |
∴CE:OE=
2 |
∴S△AEC=2S△DEO;故正确;
②过点O作OG⊥AC,
∴
AG |
CG |
∵AD平分∠CAB,
∴
CD |
BD |
∵半径OC⊥AB,
∴
AC |
BC |
∴
AG |
CG |
CD |
∴AG=CG=CD,
∴2CD>AC,
故错误;
③∵AD平分∠CAB交弧BC于点D,
∴∠DAB=∠CAD=
1 |
2 |
∴∠COD=45°,
∵AC∥DO,
∴∠CAD=∠ADO=22.5°,
∴△ADO是等腰三角形,
△DOE中,∠ADO=22.5°,∠EOD=45°,
∴△ADO和△DOE不相似,
∴线段OD不是DE与DA的比例中项,
故错误;
④∵AB是半圆直径,
∴OC=OD,
∴∠OCD=∠ODC=67.5°,
∵∠CAD=∠ADO=22.5°,
∴∠CDE=∠ODC-∠ADO=67.5°-22.5°=45°,
∴△CED∽△CDO,
∴CD:OC=CE:CD,
∴CD2=OC?CE=
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载