已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件
已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立...
已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
展开
1个回答
展开全部
(1)由f(x)≤3得|x-a|≤3, 解得a-3≤x≤a+3. 又已知不等式f(x)≤3的解集为{x|-1≤x≤5}, 所以
(2)当a=2时,f(x)=|x-2|. 设g(x)=f(x)+f(x+5), 于是 g(x)=|x-2|+|x+3|=
所以当x<-3时,g(x)>5; 当-3≤x≤2时,g(x)=5; 当x>2时,g(x)>5. 综上可得,g(x)的最小值为5. 从而,若f(x)+f(x+5)≥m 即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].(12分) |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询