如图,△ABC是等边三角形,P是三角形外一点,且∠ABP+∠ACP=180°,求证;PB+PC=PA
展开全部
证明:
在PA上截取PE=BP,连接BE
因为∠ABP+∠ACP=180°
所以A、B、P、C四点共圆
因为△ABC是等边三角形
所以∠BCA=60°
因为∠BPA=∠BCA
所以∠BPA=60°
因为PE=BP
所以△BPE是等边三角形
所以 BE=BP
又因为AB=AC,∠BAP=∠BCP
所以△ABE≌△CBP
所以AE=CP
所以BP+CP=PE+AE=AP
即PB+PC=PA
供参考!JSWYC
在PA上截取PE=BP,连接BE
因为∠ABP+∠ACP=180°
所以A、B、P、C四点共圆
因为△ABC是等边三角形
所以∠BCA=60°
因为∠BPA=∠BCA
所以∠BPA=60°
因为PE=BP
所以△BPE是等边三角形
所以 BE=BP
又因为AB=AC,∠BAP=∠BCP
所以△ABE≌△CBP
所以AE=CP
所以BP+CP=PE+AE=AP
即PB+PC=PA
供参考!JSWYC
参考资料: http://hi.baidu.com/jswyc/blog/item/9994bc44a1771a39869473fa.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询