3个回答
展开全部
证明如图所示:
一、分数指数幂重点:
1、分数指数幂的含义的理解。
2、根式与分数指数幂的互化。
3、有理指数幂的运算性质。
二、分数指数幂难点:
1、分数指数幂概念的理解。
2、有理指数幂的运算和化简
扩展资料:
分数指数幂的意义:
1、规定:正数的正分数指数幂的意义是——a的n分之m次方=n√a的m次方(a>0,m、n属于正整数,n>1)
2、0的正分数指数幂等于0,0的负分数指数幂没有意义
3、指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
参考资料来源:百度百科-分数指数幂
展开全部
证明: a^(m/n) = ( a^m) 开n 次方 , (m, n 为整数)
证:
令 ( a^m) 开n 次方 = b
两边取 n次方,有
a^m = b^n
a^(m/n) = ( a^m)^(1/n) = ( b^n)^(1/n) = b = ( a^m) 开n 次方
即 a^(m/n) = ( a^m) 开n 次方
证:
令 ( a^m) 开n 次方 = b
两边取 n次方,有
a^m = b^n
a^(m/n) = ( a^m)^(1/n) = ( b^n)^(1/n) = b = ( a^m) 开n 次方
即 a^(m/n) = ( a^m) 开n 次方
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询