设等比数列【AN】的前N项和为SN,若S3+S6=2S9,求数列的公比Q
2个回答
展开全部
等比数列有以下性质:
如果一个数列{an}是等比数列前n项和为Sn
则有:S3、S6-S3、S9-S6....是以q的三次方为公比的等比数列
设S3=b1,S6-S3=b2,S9-S6=b3,
因为S3+S6=2S9 ,所以b1+2(b1+b2)=2(b1+b2+b3)
两边除以b1, 得1+2(1+q 的三次方)=2(1+q的三次方+q的六次方)
设q 的三次方=x,则1+2(1+x)=2(1+x+x的平方)
解得x=二分之根号二
这样就可以解出q
如果一个数列{an}是等比数列前n项和为Sn
则有:S3、S6-S3、S9-S6....是以q的三次方为公比的等比数列
设S3=b1,S6-S3=b2,S9-S6=b3,
因为S3+S6=2S9 ,所以b1+2(b1+b2)=2(b1+b2+b3)
两边除以b1, 得1+2(1+q 的三次方)=2(1+q的三次方+q的六次方)
设q 的三次方=x,则1+2(1+x)=2(1+x+x的平方)
解得x=二分之根号二
这样就可以解出q
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询