初二数学函数练习题
直线y=kx经过(-2,1)点,A是直线y=kx上的点过A作x轴的垂线,垂足为B.且S△ABO=9.求点A的坐标...
直线y=kx经过(-2,1)点,A是直线y=kx上的点过A作x轴的垂线,垂足为B.且S△ABO=9.求点A的坐标
展开
展开全部
初二数学函数练习题帮忙找下有没有题目。
原答案:一.
1.已知函数y=mx+2x-2,要使函数值y随自变量x的增大而增大,则m的取值范围是 ( )
A.m≥-2 B.m-2 C.m≤-2 D.m-2
2.下列四个说法中错误的是 ( )
A.若y=(a+1)x(a为常数)是正比例函数,则a≠—1
B.若y=-xa-2是正比例函数,则a=3
C.正比例函数y=kx(k为常数,k≠0)的图象过二、四象限
D.正比例函数y=k2x(k为常数,k≠0)中,y随着x的增大而增大
3.正比例函数y=kx(k0),当x1=-3、x2=0、x3=2时,对应的y1、y2、y3之间的关系是( )
A y3y2,yly2 B y1y2y3 C. y1y2y3 D. 无法确定
4.一次函数y=kx+b的图象经过(m,1)、(-1,m),其中m1,则k、b ( )
A.k0且b0 B.k0且b0 C.k0且b0 D.k0且b0
5.已知函数y=-x+m与y=mx-4的图象交点在x轴的负半轴上,那么m的值为( )
A. ±2 B. ±4 C.2 D. -2
6.星期天晚饭后,小红从家里出去散步,如图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面的描述符合小红散步情景的是 ( )
A. 从家出发,到了一个公共阅报栏,看了一会儿报,就回家了
B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了
C.从家出发,一直散步(没有停留),然后回家了
D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回
7.直线y=-43x+4和x轴、y轴分别相交于点A、B,在平面直角坐标系内,A、B两点到直线a的距离均为2,则满足条件的直线a的条数为( )
A.1 B.2 C. 3 D.4
18.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x千米,那么x的最大值是 ( )
A.11 B.8 C. 7 D.5
二、
1.已知一次函数y=2x+4的图象经过点(m,8),则m=_______.
2.若一次函数y=(2-m)x+m的图象经过第一、二、四象限,则m的取值范围是_______
3.若直线y=-x+a和直线y=x+b的交点坐标为(m,8),则a+b=_______.
4.若正比例函数y=(m-1)x ,y随x的增大而减小,则m的值是_______.
5.一次函数y=kx+b(k≠0)的图象过点(1,-1),且与直线y=5-2x平行,则此一次函数的解析式为_______,其图象经过_______象限.
6.如果正比例函数y=3x和一次函数y=2x+k的图象交点在第三象限,那么k的取值范围是_______.
7.对于函数y=mx+1(m0),当m=_______时,图象与坐标轴围成的图形面积等于1.
8.已知一次函数y=-3x+2,当— 13≤x≤2时,函数值y的取值范围是_______.
9.已知A、B的坐标分别为(-2,0)、(4,0),点P在直线y=12x+2上,如果△ABP为直角三角形,这样的P点共有_______个。
10.已知m是整数,且一次函数y=(m+4)x+m+2的图象不经过第二象限,则m=_______
三:
1.已知直线y=-2x+3与直线y=x-6交于点A,且两直线与x轴的交点分别为B、C,求△ABC的面积.
2.已知直线l与直线y=2x+1的交点横坐标为2,与直线y=-x-8的交点的纵坐标为-7,求直线l的解析式
3.现计划把甲种货物1240t和乙种货物880t用一列货车运往某地,这列货车有A、B两种不同的车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.
1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x的函数关系式;
2)如果每节A型车厢最多可装甲种货物35t和乙种货物15t,每节B型车厢最多可装甲种货物25t和乙种货物35t,装货时按此要求安排A、B两种车厢节数,问共有哪几种安排车厢的方案?
3)在上述方案中,哪个方案运费最少?最少运费是多少?
原答案:一.
1.已知函数y=mx+2x-2,要使函数值y随自变量x的增大而增大,则m的取值范围是 ( )
A.m≥-2 B.m-2 C.m≤-2 D.m-2
2.下列四个说法中错误的是 ( )
A.若y=(a+1)x(a为常数)是正比例函数,则a≠—1
B.若y=-xa-2是正比例函数,则a=3
C.正比例函数y=kx(k为常数,k≠0)的图象过二、四象限
D.正比例函数y=k2x(k为常数,k≠0)中,y随着x的增大而增大
3.正比例函数y=kx(k0),当x1=-3、x2=0、x3=2时,对应的y1、y2、y3之间的关系是( )
A y3y2,yly2 B y1y2y3 C. y1y2y3 D. 无法确定
4.一次函数y=kx+b的图象经过(m,1)、(-1,m),其中m1,则k、b ( )
A.k0且b0 B.k0且b0 C.k0且b0 D.k0且b0
5.已知函数y=-x+m与y=mx-4的图象交点在x轴的负半轴上,那么m的值为( )
A. ±2 B. ±4 C.2 D. -2
6.星期天晚饭后,小红从家里出去散步,如图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面的描述符合小红散步情景的是 ( )
A. 从家出发,到了一个公共阅报栏,看了一会儿报,就回家了
B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了
C.从家出发,一直散步(没有停留),然后回家了
D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回
7.直线y=-43x+4和x轴、y轴分别相交于点A、B,在平面直角坐标系内,A、B两点到直线a的距离均为2,则满足条件的直线a的条数为( )
A.1 B.2 C. 3 D.4
18.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x千米,那么x的最大值是 ( )
A.11 B.8 C. 7 D.5
二、
1.已知一次函数y=2x+4的图象经过点(m,8),则m=_______.
2.若一次函数y=(2-m)x+m的图象经过第一、二、四象限,则m的取值范围是_______
3.若直线y=-x+a和直线y=x+b的交点坐标为(m,8),则a+b=_______.
4.若正比例函数y=(m-1)x ,y随x的增大而减小,则m的值是_______.
5.一次函数y=kx+b(k≠0)的图象过点(1,-1),且与直线y=5-2x平行,则此一次函数的解析式为_______,其图象经过_______象限.
6.如果正比例函数y=3x和一次函数y=2x+k的图象交点在第三象限,那么k的取值范围是_______.
7.对于函数y=mx+1(m0),当m=_______时,图象与坐标轴围成的图形面积等于1.
8.已知一次函数y=-3x+2,当— 13≤x≤2时,函数值y的取值范围是_______.
9.已知A、B的坐标分别为(-2,0)、(4,0),点P在直线y=12x+2上,如果△ABP为直角三角形,这样的P点共有_______个。
10.已知m是整数,且一次函数y=(m+4)x+m+2的图象不经过第二象限,则m=_______
三:
1.已知直线y=-2x+3与直线y=x-6交于点A,且两直线与x轴的交点分别为B、C,求△ABC的面积.
2.已知直线l与直线y=2x+1的交点横坐标为2,与直线y=-x-8的交点的纵坐标为-7,求直线l的解析式
3.现计划把甲种货物1240t和乙种货物880t用一列货车运往某地,这列货车有A、B两种不同的车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.
1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x的函数关系式;
2)如果每节A型车厢最多可装甲种货物35t和乙种货物15t,每节B型车厢最多可装甲种货物25t和乙种货物35t,装货时按此要求安排A、B两种车厢节数,问共有哪几种安排车厢的方案?
3)在上述方案中,哪个方案运费最少?最少运费是多少?
展开全部
因为A点过(3.0)点,且与坐标轴围成三角形面积为6,根据三角形面积法,6乘2得12,可知与y轴交于点(0.4),将点代入,得b等于4,代入点A,可得到方程y=-4/3x+4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵三角形面积是1,∴Y=AX+2与X轴交与(1,0)(A<0,B=2∴直线过124象限)
0=1×A+2
A=-2
0=1×A+2
A=-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
把A点坐标代入y=kx+b得:b=-3k
∴一次函数解析式为y=kx-3k
它与x轴交于A(3,0),与y轴交于B(0,-3k),
∵S△ABO=1/2×3×|-3k|=6,解得:k=±4/3
∴一次函数解析式为y=4/3x-4,或y=-4/3x+4
可以吗?
∴一次函数解析式为y=kx-3k
它与x轴交于A(3,0),与y轴交于B(0,-3k),
∵S△ABO=1/2×3×|-3k|=6,解得:k=±4/3
∴一次函数解析式为y=4/3x-4,或y=-4/3x+4
可以吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先这条直线恒过定点(0,2),也就是说无论a为几,当X取0时y必然为2.
那么,由a小于0可知该直线所对应的函数在整个定义域上是单调递减的,也就是说它必定过第一、二、四象限。
所以,直线与x轴必交于点(-a,0),与y轴交于点(0,2),那么我们有:(-a)*2/2=1,解得a=-1
那么,由a小于0可知该直线所对应的函数在整个定义域上是单调递减的,也就是说它必定过第一、二、四象限。
所以,直线与x轴必交于点(-a,0),与y轴交于点(0,2),那么我们有:(-a)*2/2=1,解得a=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询