数学求导问题 大神来帮忙
(一).求下列函数的一阶导数dy/dx:
x³+y³=64; 解: 3x²+3y²y'=0,故y'=dy/dx=-x²/y²;
x²-y²=25; 解:2x-2yy'=0, ∴y'=x/y;
x³-xy+y²=7; 解:3x²-y-xy'+2yy'=0; (2y-x)y'=y-3x²;∴y'=(y-3x²)/(2y-x);
coty=x²-3y; 解:-(csc²y)y'=2x-3y'; (3-csc²y)y'=2x;∴y'=2x/(3-csc²y);
y=sin(xy);
解:y'=[cos(xy)](y+xy'); [1-xcos(xy)]y'=ycos(xy);∴y'=[ycos(xy)]/[1-xcos(xy)];
tan(y^4)=ln3x+e^(2y)
解:设F(x,y)=tan(y^4)-ln3x-e^(2y)=0
则dy/dx=-(∂F/∂x)/(∂F/∂y)=-(-1/x)/[4y³sec²(y^4)-2e^(2y)]=1/[4y³sec²(y^4)-2e^(2y)]x
tan(x+y)=x; 解:(1+y')sec²(x+y)=1;∴y'=[1-sec²(x+y)]/sec²(x+y);
或用公式作:设 F(x,y)=tan(x+y)-x=0;
则dy/dx=-(∂F/∂x)/(∂F/∂y)=-[sec²(x+y)-1]/sec²(x+y)=(1-sec²(x+y)]/sec²(x+y);
sinx=x(1+tany)
解:设F(x,y)=sinx-x(1+tany)=0;
则dy/dx=-((∂F/∂x)/(∂F/∂y)=-(cosx-1-tany)/(-xsec²y)=(cosx-1-tany)/(xsec²y);
(二).求下列函数的二阶导数
x²+y²=4;解:2x+2yy'=0,∴y'=-x/y;y''=(-y+xy')/y²=[-y-(x²/y)]/y²=-(y²+x²)/y³;
1-xy=x-y;解:-y-xy'=1-y';∴y'=(1+y)/(1-x);
∴ y''=[(1-x)y'+(1+y)]/(1-x)²=2(1+y)/(1-x)²;
(三). 求下列函数过已知点的导数
xcosy=1;(2,π/3);
解:∵2cos(π/3)=2×(1/2)=1;∴点(2,π/3)在曲线上;于是:
由cosy-y'xsiny=0;得y'=(cosy)/xsiny∣(2,π/3)=[cos(π/3)]/2sin(π/3)=1/(2√3);
x³+y³-6xy=0;(4/3,8/3)
解:∵(4/3)³+(8/3)³-6•(4/3)(8/3)=0,∴点(4/3,8/3)在曲线上;
3x²+3y²y'-6y-6xy'=0;
∴y'=(6y-3x²)/(3y²-6x)=(2y-x²)/(y²-2x)∣(4/3,8/3)=(16/3-16/9)/(64/9-8/3)=4/5;
您可以在详细的写一下过程吗