线性代数A和A的转置行列式的所有关系

 我来答
帐号已注销
2021-07-27 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

相等的,因为行列式最后是经过变换得到的,最后是用对角线上的乘积,A的行变换和A转置矩阵的列变换得到的对角线是一样的值。

证明如下:

假定A(T)A做了一个特征分解,为:A(T)A = QΣQ(T)

对上式取转置,有AA(T) = QΣ(T)Q(T)

显然,Σ是个对角阵,因而,Σ(T) = Σ

故而,AA(T)和A(T)A有完全一致的特征分解,即共特征值

性质

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

德蕾亢绫
2019-12-10 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:28%
帮助的人:928万
展开全部
相等的,因为行列式最后是经过变换得到的,最后是用对角线上的乘积,A的行变换和A转置矩阵的列变换得到的对角线是一样的值
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式