用数学归纳法证明:x^2n 能被x+1整除 x^2n-1能被 x+1整除,抱歉,
1个回答
展开全部
当n = 1,x^2n - 1 = (x + 1)(x - 1),原命题成立
假设n = k时,命题成立,x ^2k - 1 = A(x + 1),得x^2k = A(x + 1) + 1
n = k + 1时,x^2n - 1 = x^2k * x^2 - 1 = A*x^2*(x + 1) + x^2 - 1 =
A*x^2 *(x + 1) + (x + 1)(x - 1) = A'(x + 1),命题也成立
所以原命题成立
假设n = k时,命题成立,x ^2k - 1 = A(x + 1),得x^2k = A(x + 1) + 1
n = k + 1时,x^2n - 1 = x^2k * x^2 - 1 = A*x^2*(x + 1) + x^2 - 1 =
A*x^2 *(x + 1) + (x + 1)(x - 1) = A'(x + 1),命题也成立
所以原命题成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询