关于线性代数问题。m个n维行向量,当n小于m时,是否线性相关,我想问的是行向量。。。

m个n维列向量,当n小于m时,一定线性相关,我是通过把它看成矩阵来理解的,m个n维列向量就是n*m阶矩阵,n可以理解是方程的个数,m理解是未知数,方程的个数小于未知数的个... m个n维列向量,当n小于m时,一定线性相关,我是通过把它看成矩阵来理解的,m个n维列向量就是n*m阶矩阵,n可以理解是方程的个数,m理解是未知数,方程的个数小于未知数的个数,方程肯定有非零解,自然也就线性相关了,但是,如果换成行向量后就不一样。我想知道这是为什么?怎么理解?谢谢! 展开
robin_2006
2014-05-19 · TA获得超过3.9万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:8495万
展开全部
不管是行向量还是列向量,当向量组中向量的维数小于向量的个数时,向量组一定线性相关。所以,
m个n维行向量,当n小于m时,是否线性相关? 一定线性相关!
因为这m个行向量构成一个m×n矩阵,它的秩≤n<m,向量组的秩小于向量的个数,所以向量组线性相关。如果要考虑齐次线性方程组,形式是xA=0,如果不习惯,可以转置后变成A'x=0,方程个数小于未知量个数,方程组有非零解。
追问
为什么齐次线性方程组,形式是xA=0?顺便问下,向量组线性相关的条件是它的秩<向量个数这个是定理,如何证明呢?
追答
行向量组组成矩阵A时,这些向量当然是矩阵的行向量了,x1a1+x2a2+...+xkak不就是(x1,x2,...,xk)A。

还要证明吗?一直在使用的结论。列向量组的线性相关性归结为Ax=0的解的情形,向量组的秩=A的秩<A的列数=向量的个数,这不就是方程组有非零解的判定吗
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式