反三角函数的定义域和值域
都说一下吧,尤其值域,为什么在不同题中不一样,晕为什么sinX的定义域是(-pai/2,pai/2),而不是R...
都说一下吧,尤其值域,为什么在不同题中不一样,晕
为什么sinX的定义域是(-pai/2,pai/2),而不是R 展开
为什么sinX的定义域是(-pai/2,pai/2),而不是R 展开
展开全部
由反三角函数的定义即可推知:
1)设sinx=a,x∈[-pai/2,pai/2],a∈[-1,1],则x=arcsin a
所以y=arcsinx 的定义域:[-1,1],值域:[-pai/2,pai/2]
2)同样反余弦值域是 :[0,pai],反正切值域:(-pai/2,pai/2)
再回答:只有单调函数才可能有反函数,准确地说,只有一一映射才有逆映射
若x∈R,那么a=0时,arcsin a =0,派,还是…
这时 y=arcsinx 对于同一个x的值,就有多个y和他对应,这不满足 函数定义。
1)设sinx=a,x∈[-pai/2,pai/2],a∈[-1,1],则x=arcsin a
所以y=arcsinx 的定义域:[-1,1],值域:[-pai/2,pai/2]
2)同样反余弦值域是 :[0,pai],反正切值域:(-pai/2,pai/2)
再回答:只有单调函数才可能有反函数,准确地说,只有一一映射才有逆映射
若x∈R,那么a=0时,arcsin a =0,派,还是…
这时 y=arcsinx 对于同一个x的值,就有多个y和他对应,这不满足 函数定义。
展开全部
反正弦函数y=arcsinx,
表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1] ,值域[-π/2,π/2]。
反余弦函数y=arccosx,
表示一个余弦值为x的角,该角的范围在[0,π]区间内。
定义域[-1,1] , 值域[0,π]。
反正切函数y=arctanx,
表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。
定义域R,值域(-π/2,π/2)。
反余切函数y=arccotx,
表示一个余切值为x的角,该角的范围在(0,π)区间内。
定义域R,值域(0,π)。
反正割函数y=arcsecx,
表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。
定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
反余割函数y=arccscx,
表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。
定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。
表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1] ,值域[-π/2,π/2]。
反余弦函数y=arccosx,
表示一个余弦值为x的角,该角的范围在[0,π]区间内。
定义域[-1,1] , 值域[0,π]。
反正切函数y=arctanx,
表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。
定义域R,值域(-π/2,π/2)。
反余切函数y=arccotx,
表示一个余切值为x的角,该角的范围在(0,π)区间内。
定义域R,值域(0,π)。
反正割函数y=arcsecx,
表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。
定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
反余割函数y=arccscx,
表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。
定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询