关于x的一元二次方程x^2-mx+(m-2)=0的根的情况是
3个回答
展开全部
x² - mx + (m - 2) = 0
△
= m² - 4(m - 2)
= m² - 4m + 8
= m² - 4m + 4 + 4
= (m - 2)² + 4
> 0
所有方程有两个不相等的实数根。
△
= m² - 4(m - 2)
= m² - 4m + 8
= m² - 4m + 4 + 4
= (m - 2)² + 4
> 0
所有方程有两个不相等的实数根。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
判别式=(-m)²-4(m-2)
=m²-4m+8
=m²-4m+4+4
=(m-2)²+4≥4>0
判别式大于0
所以有两个不同的根
=m²-4m+8
=m²-4m+4+4
=(m-2)²+4≥4>0
判别式大于0
所以有两个不同的根
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由判别式等于m^2-4*(m-2)=(m-2)^2+4;可知:判别式恒大于0,于是x=(m+-(m^2-4*m+8)^(1/2))/2,有两个相异实根。(m是实数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询