(2014?安庆一模)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AF

(2014?安庆一模)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若... (2014?安庆一模)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=33,AE=3,求AF的长;(3)若CD=CE,则直线CD是以点E为圆心,AE长为半径的圆的切线.试证明之. 展开
 我来答
淡烟cPW41P
2014-08-29 · 超过77用户采纳过TA的回答
知道答主
回答量:197
采纳率:0%
帮助的人:73万
展开全部
(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠B+∠C=180°,∠ADF=∠DEC,
∵∠AFD+∠AFE=180°,∠AFE=∠B,
∴∠AFD=∠C,
∴△ADF∽△DEC;

(2)∵AE⊥BC,AD=3
3
,AE=3,
∴DE=
AD2+AE2
=
(3
3
)2+32
=6,
由(1)知△ADF∽△DEC,得
AF
DC
AD
DE

∴AF=
DC×AD
DE
=
4×3
3
6
=2
3
.  

(3)过点E作EH⊥CD于点H.
∵CD=CE,
∴∠CED=∠CDE.
∵∠ADE=∠CED,
∴∠ADE=∠CDE.
又∵∠EAD=∠EHD=90°,DE=DE,
在△ADE和△HDE中,
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消