如图,等腰直角△ABC内接于⊙O,D为⊙O上一点,连接AD、BD、CD(1)如图(1),点D在半圆BC上时,求证:B

如图,等腰直角△ABC内接于⊙O,D为⊙O上一点,连接AD、BD、CD(1)如图(1),点D在半圆BC上时,求证:BD+CD=2AD;(2)如图(2),点D在劣弧AB上时... 如图,等腰直角△ABC内接于⊙O,D为⊙O上一点,连接AD、BD、CD(1)如图(1),点D在半圆BC上时,求证:BD+CD=2AD;(2)如图(2),点D在劣弧AB上时,直接写出BD、CD、AD间的数量关系:______;(3)在(2)的条件下,如图(3),CD与AB交于点E,连接AO交CD于F,若AE=3BE,AF=1272,求⊙O的直径. 展开
 我来答
清风看号246
2014-11-10 · TA获得超过147个赞
知道答主
回答量:104
采纳率:100%
帮助的人:105万
展开全部
(1)证明:作MA⊥AD,交DB延长线于M,
∵∠BAC=90°,
∴∠1+∠3=90°=∠1+∠2,
∴∠2=∠3,
∵A、B、D、C四点共圆,
∴∠4=∠ACD,
在△ACD和△ABM中
∠2=∠3
AC=AB
∠ACD=∠4

∴△ACD≌△ABM(ASA),
∴AM=AD,CD=BM,
∵∠MAD=90°,
∴△MAD是等腰直角三角形,
由勾股定理得:DM=
2
AD,
∵DM=DB+BM=DB+CD,
∴BD+CD=
2
AD;

(2)解:CD-BD=
2
AD.
理由是:如图2,在CD上截取CN=BD,连接AN,
∵弧AD=弧AD,
∴∠ACN=∠ABD,
在△ACN和△ABD中
AC=AB
∠ACN=∠ABD
CN=BD

∴△ACN≌△ABD(SAS),
∴AD=AN,∠CAN=∠BAD,
∵∠BAC=∠BAN+∠CAN=90°,
∴∠DAN=∠DAB+∠BAN=90°,
∴△DAN是等腰直角三角形,
由勾股定理得:DN=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消