设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1)时f(x)=log

设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1)时f(x)=log0.5(1-x),则:①2是函数f(x)的周期;... 设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1)时f(x)=log0.5(1-x),则:①2是函数f(x)的周期;②f(x)在(1,2)上是增函数,在(2,3)上是减函数;③f(x)的最大值是1,最小值是0;④当x∈(3,4)时,f(x)=log0.5(x-3).其中所有正确命题的序号是______. 展开
 我来答
萝莉控小宣150
推荐于2016-08-29 · 超过58用户采纳过TA的回答
知道答主
回答量:191
采纳率:33%
帮助的人:53.6万
展开全部
①因为f(x+1)=f(x-1),所以f(x+2)=f(x),所以函数是周期函数,周期为2,所以①正确.
②当x∈[0,1)时f(x)=log0.5(1-x),此时函数单调递增.因为函数为偶函数,所以函数在(-1,0)上单调递减,
所以f(x)在(1,2)上是减函数,在(2,3)上是增函数,所以②错误.
③由②知函数在x=0处取得最小值,在x=1处取得最大值,因为f(0=log0.5(1-0)=0,所以最小值为0.因为函数的最大值为f(1),但f(1)没有具体的数值,所以③错误.
④若3<x<4,则-4<-x<-3,所以0<4-x<1,所以f(x)=f(-x)=f(4-x)=log?0.5[1-(4-x)]=log?0.5(x-3),所以④正确.
故答案为:①④.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式