一。如图, 在四边形ABCD中,点E是BC的中点,点F是CD的中点,且AE⊥BC,AF⊥CD
1.求证,AB=AD2.请你研究∠EAF,∠BAE,∠DAF之间有什么数量关系、?并证明二.如图,△ABC为等边三角形,BD=AE求证,CE=DE两道题都要回答,请速度一...
1.求证,AB=AD
2.请你研究∠EAF,∠BAE,∠DAF之间有什么数量关系、?并证明
二.如图,△ABC为等边三角形,BD=AE求证,CE=DE
两道题都要回答,请速度一点
帮帮忙,我会追加分的 展开
2.请你研究∠EAF,∠BAE,∠DAF之间有什么数量关系、?并证明
二.如图,△ABC为等边三角形,BD=AE求证,CE=DE
两道题都要回答,请速度一点
帮帮忙,我会追加分的 展开
展开全部
1.连AC,由AE⊥BC,E是BC中点,
∴BE=CE,△ABE≌△ACE(S,A,S)
∴AB=AC。
同理:AD=AC,∴AB=AD
∴AB=AD正确。
2.由∠BAE=∠CAE,∠DAF=∠CAF,
∴∠BAD=2∠EAF。(∠EAF
,∠BAE之间没有数量关系)
∴BE=CE,△ABE≌△ACE(S,A,S)
∴AB=AC。
同理:AD=AC,∴AB=AD
∴AB=AD正确。
2.由∠BAE=∠CAE,∠DAF=∠CAF,
∴∠BAD=2∠EAF。(∠EAF
,∠BAE之间没有数量关系)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据
中垂线
上的点到两边的距离相等有:
AB=AC,AC=AD
所以:AB=AD
有AB=AC,AC=AD可知△BAC与△CAD都是
等腰三角形
所以∠BAE=1/2∠BAC,∠DAF=1/2∠DAC
而∠EAF=∠EAC+∠FAC
所以:∠EAF=∠BAE+∠DAF
中垂线
上的点到两边的距离相等有:
AB=AC,AC=AD
所以:AB=AD
有AB=AC,AC=AD可知△BAC与△CAD都是
等腰三角形
所以∠BAE=1/2∠BAC,∠DAF=1/2∠DAC
而∠EAF=∠EAC+∠FAC
所以:∠EAF=∠BAE+∠DAF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)连接ac,
∵点e是bc的中点,ae⊥bc,
∴ab=ac,
∵点f是cd的中点,af⊥cd,
∴ad=ac,
∴ab=ad.
(2)∠eaf=2∠bae=2∠daf.
证明:∵ab=ad=ac,
∴△abc、△acd为等腰三角形,
∵ae⊥bc,af⊥cd,
∴∠bae=∠eac=∠caf=∠daf,
∴∠eaf=2∠bae=2∠daf.
∵点e是bc的中点,ae⊥bc,
∴ab=ac,
∵点f是cd的中点,af⊥cd,
∴ad=ac,
∴ab=ad.
(2)∠eaf=2∠bae=2∠daf.
证明:∵ab=ad=ac,
∴△abc、△acd为等腰三角形,
∵ae⊥bc,af⊥cd,
∴∠bae=∠eac=∠caf=∠daf,
∴∠eaf=2∠bae=2∠daf.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
辅助线:连接AC(楼主忘记C点了吧)
∵AE⊥BC,BE=CE.于是乎,△ABE≌△ACE(SAS).∴AB=AC.
又∵AF⊥CD,CF=DF.又于是乎△ACF≌△ADF(SAS).∴AD=AC.
∴AB=AD.
==============================第一问证明完毕
又∵∠B=∠ACE,∠D=∠ACF.
∴∠B+∠D=∠ACE+∠ACF=∠C.
又∵∠EAF+∠C=180°(是因为∠AEF=∠AFC=90°)
∴∠EAF+∠C=∠EAF+∠B+∠D.
又∵∠B=90°-∠BAE,∠D=90°-∠FAD.
∴∠EAF+∠B+∠D=∠EAF+90°-∠BAE+90°-∠FAD=180°
∴∠EAF=∠BAE+∠FAD.
∵AE⊥BC,BE=CE.于是乎,△ABE≌△ACE(SAS).∴AB=AC.
又∵AF⊥CD,CF=DF.又于是乎△ACF≌△ADF(SAS).∴AD=AC.
∴AB=AD.
==============================第一问证明完毕
又∵∠B=∠ACE,∠D=∠ACF.
∴∠B+∠D=∠ACE+∠ACF=∠C.
又∵∠EAF+∠C=180°(是因为∠AEF=∠AFC=90°)
∴∠EAF+∠C=∠EAF+∠B+∠D.
又∵∠B=90°-∠BAE,∠D=90°-∠FAD.
∴∠EAF+∠B+∠D=∠EAF+90°-∠BAE+90°-∠FAD=180°
∴∠EAF=∠BAE+∠FAD.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询