如图,已知Rt三角形ABC中,AB=AC,∠BAC=90°∠1=∠2,CE垂直BD的延长线于点E,求证BD=2CE
3个回答
展开全部
延长CE、BA,相交于点F。(∠1和∠2分别是∠ABD和∠CBD)
在△BCE和△BFE中,
∠BEC = 90°= ∠BEF ,BE为公共边,∠CBE = ∠FBE ,
所以,△BCE ≌ △BFE ,
可得:CE = EF ,即有:CF = 2CE ;
在△CAF和△BAD中,
∠ACF = 90°-∠AFC = ∠ABD ,AC = AB ,∠CAF = 90°= ∠BAD ,
所以,△CAF ≌ △BAD ,
可得:CF = BD ,则有:BD = 2CE 。
在△BCE和△BFE中,
∠BEC = 90°= ∠BEF ,BE为公共边,∠CBE = ∠FBE ,
所以,△BCE ≌ △BFE ,
可得:CE = EF ,即有:CF = 2CE ;
在△CAF和△BAD中,
∠ACF = 90°-∠AFC = ∠ABD ,AC = AB ,∠CAF = 90°= ∠BAD ,
所以,△CAF ≌ △BAD ,
可得:CF = BD ,则有:BD = 2CE 。
展开全部
延长CE、BA,相交于点F。(∠1和∠2分别是∠ABD和∠CBD)
在△BCE和△BFE中,
∠BEC = 90°= ∠BEF ,BE为公共边,∠CBE = ∠FBE ,
所以,△BCE ≌ △BFE ,
可得:CE = EF ,即有:CF = 2CE ;
在△CAF和△BAD中,
∠ACF = 90°-∠AFC = ∠ABD ,AC = AB ,∠CAF = 90°= ∠BAD ,
所以,△CAF ≌ △BAD ,
可得:CF = BD ,则有:BD = 2CE 。
在△BCE和△BFE中,
∠BEC = 90°= ∠BEF ,BE为公共边,∠CBE = ∠FBE ,
所以,△BCE ≌ △BFE ,
可得:CE = EF ,即有:CF = 2CE ;
在△CAF和△BAD中,
∠ACF = 90°-∠AFC = ∠ABD ,AC = AB ,∠CAF = 90°= ∠BAD ,
所以,△CAF ≌ △BAD ,
可得:CF = BD ,则有:BD = 2CE 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-11-17
展开全部
BD=2CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询