圆锥曲线综合问题~~!急!
已知F1,F2是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P为椭圆C上一点,且向量PF1垂直向量PF2,若△PF1F2的面积为9,则b=?求详解...
已知F1,F2是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P为椭圆C上一点,且向量PF1垂直向量PF2,若△PF1F2的面积为9,则b=?
求详解~ 答案中有一步b^2=a^2-c^2=9不知怎么得出~求解~~谢谢!! 展开
求详解~ 答案中有一步b^2=a^2-c^2=9不知怎么得出~求解~~谢谢!! 展开
1个回答
展开全部
这个直接套公式 b^2*tan(θ/2)=S△PF1F2 θ是夹角 这题是90°套一下就出来了 b=3
自己推了半天才出来 高中的时候记下来的
具体证明看看吧
以椭圆的两个焦点F1,F2与椭圆上任意一点P为定点组成的三角形。
运用公式: 设角F1F2P=α F2F1P=β F1PF2=θ
则有离心率e=sin(α+β)/sinα + sinβ
焦点三角形面积S=b^2tan2/θ
证明:设F1P=c F2P=b 2a=c+b
由射影定理得2c=ccosβ+bcosα
e=c/a=2c/2a=ccosβ+bcosα/c+b
由正弦定理e=sinαcosβ+sinβcosα/sinβ+sinα=sin(α+β)/sinα + sinβ
证明2:对于焦点△F1PF2,设PF1=m,PF2=n
则m+n=2a
在△F1PF2中,由余弦定理: (F1F2)^2=m^2+n^2-2mncosθ
即4c^2=(m+n)^2-2mn-2mncosθ=4a^2-2mn(1+cosθ)
所以mn(1+cosθ)=2a^2-2c^2=2b^2
所以mn=2b^2/(1+cosθ)
S=(mnsinθ)/2.............(正弦定理的三角形面积公式)
=b^2*sinθ/(1+cosθ)
=b^2*[2sin(θ/2)cos(θ/2)]/2[cos(θ/2)]^2
=b^2*sin(θ/2)/cos(θ/2)
=b^2*tan(θ/2)
采纳吧~~~
自己推了半天才出来 高中的时候记下来的
具体证明看看吧
以椭圆的两个焦点F1,F2与椭圆上任意一点P为定点组成的三角形。
运用公式: 设角F1F2P=α F2F1P=β F1PF2=θ
则有离心率e=sin(α+β)/sinα + sinβ
焦点三角形面积S=b^2tan2/θ
证明:设F1P=c F2P=b 2a=c+b
由射影定理得2c=ccosβ+bcosα
e=c/a=2c/2a=ccosβ+bcosα/c+b
由正弦定理e=sinαcosβ+sinβcosα/sinβ+sinα=sin(α+β)/sinα + sinβ
证明2:对于焦点△F1PF2,设PF1=m,PF2=n
则m+n=2a
在△F1PF2中,由余弦定理: (F1F2)^2=m^2+n^2-2mncosθ
即4c^2=(m+n)^2-2mn-2mncosθ=4a^2-2mn(1+cosθ)
所以mn(1+cosθ)=2a^2-2c^2=2b^2
所以mn=2b^2/(1+cosθ)
S=(mnsinθ)/2.............(正弦定理的三角形面积公式)
=b^2*sinθ/(1+cosθ)
=b^2*[2sin(θ/2)cos(θ/2)]/2[cos(θ/2)]^2
=b^2*sin(θ/2)/cos(θ/2)
=b^2*tan(θ/2)
采纳吧~~~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询