定义域关于原点对称的函数f(x)可以表示成一个奇函数与一个偶函数的和,即f(x)={f(x)-f(-
定义域关于原点对称的函数f(x)可以表示成一个奇函数与一个偶函数的和,即f(x)={f(x)-f(-x)}/2+{f(x)+f(-x)}/2。怎么理解啊,能给个详细步骤吗...
定义域关于原点对称的函数f(x)可以表示成一个奇函数与一个偶函数的和,即f(x)={f(x)-f(-x)}/2+{f(x)+f(-x)}/2。怎么理解啊,能给个详细步骤吗。
展开
1个回答
2010-11-09
展开全部
任意函数f(x),构造两个函数,g(x),h(x)
其中,g(x)=(f(x)-f(-x))/2
h(x)=(f(x)+f(-x))/2
由于g(-x)=(f(-x)-f(x))/2=-g(-x)
h(-x)=(f(-x)+f(x))/2=h(x)
所以g(x)为奇函数,h(x)为偶函数
g(x)+h(x)=(f(x)-f(-x))/2 + (f(x)+f(-x))/2 = f(x)。
其中,g(x)=(f(x)-f(-x))/2
h(x)=(f(x)+f(-x))/2
由于g(-x)=(f(-x)-f(x))/2=-g(-x)
h(-x)=(f(-x)+f(x))/2=h(x)
所以g(x)为奇函数,h(x)为偶函数
g(x)+h(x)=(f(x)-f(-x))/2 + (f(x)+f(-x))/2 = f(x)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询