将f(x)=(e^x-1)/x展开为x的幂级数,解题过程
展开全部
解:∵f(x)=ex,
∴f′(x)=f″(x)=....=f^n(x)=ex
∴f(0)=f′(0)=f″(0)=....=f^n(0)=1
函数在区间-r≤x≤r上有|fn(x)|=|e^x|≤e^r(n=1,2)
所以函数ex可以在区间[-r,r]上展开成幂级数,
结果为
e^x=1+f'(0)x/1!+f"(0)x^2/2!+...+f^n(0)x^n/n!
e^x=1+x+x^2/2!+x^3/3!+...+x^n/n!
∴f′(x)=f″(x)=....=f^n(x)=ex
∴f(0)=f′(0)=f″(0)=....=f^n(0)=1
函数在区间-r≤x≤r上有|fn(x)|=|e^x|≤e^r(n=1,2)
所以函数ex可以在区间[-r,r]上展开成幂级数,
结果为
e^x=1+f'(0)x/1!+f"(0)x^2/2!+...+f^n(0)x^n/n!
e^x=1+x+x^2/2!+x^3/3!+...+x^n/n!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询