C语言编程之二进制原码、反码和补码
在计算机内,有符号数有3种表示法:原码、反码和补码。
在计算机中,数据是以补码的形式存储的,所以补码在c语言的教学中有比较重要的地位,而讲解补码必须涉及到原码、反码。
详细释义
所谓原码就是二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
原码、反码和补码的表示方法
定点整数表示法
定点小数小时法
反码
正数:正数的反码与原码相同。
负数:负数的反码,符号位为“1”,数值部分按位取反。
例如: 符号位 数值位
[+7]反= 0 0000111 B
[-7]反= 1 1111000 B
注意:
a. 数0的反码也有两种形式,即
[+0]反=00000000B
[- 0]反=11111111B
b. 8位二进制反码的表示范围:-127~+127
原码
在数值前直接加一符号位的表示法。
例如: 符号位 数值位
[+7]原= 0 0000111 B
[-7]原= 1 0000111 B
注意:
数0的原码有两种形式:
[+0]原= 00000000B
[-0]原= 10000000B
位二进制原码的表示范围:-127~+127
补码
1)模的概念:把一个计量单位称之为模或模数。
例如,时钟是以12进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。
对于一个模数为12的循环系统来说,加2和减10的效果是一样的;因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。
10和2对模12而言互为补数。
同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位二进制数,它的模数为2^8=256。在计算中,两个互补的数称为“补码”。
2)补码的表示:
正数:正数的补码和原码相同。
负数:负数的补码则是符号位为“1”。并且,这个“1”既是符号位,也是数值位。数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。
例如: 符号位 数值位
[+7]补= 0 0000111 B
[-7]补= 1 1111001 B
补码在微型机中是一种重要的编码形式,请注意:
a. 采用补码后,可以方便地将减法运算转化成加法运算,运算过程得到简化。
正数的补码即是它所表示的数的真值,而负数的补码的数值部份却不是它所表示的数的真值。
采用补码进行运算,所得结果仍为补码。
b. 与原码、反码不同,数值0的补码只有一个,即
[0]补=00000000B。
若字长为8位,则补码所表示的范围为-128~+127;进行补码运算时,应注意所得结果不应超过补码所能表示数的范围。
原码、反码和补码之间的转换
由于正数的原码、补码、反码表示方法均相同,不需转换。
在此,仅以负数情况分析。
(1) 已知原码,求补码。
例:已知某数X的原码为10110100B,试求X的补码和反码
解:由[X]原=10110100B知,X为负数。求其反码时,符号位不变,数值部分按位求反;求其补码时,再在其反码的末位加1。
1 0 1 1 0 1 0 0 原码
1 1 0 0 1 0 1 1 反码,符号位不变,数值位取反
1 1 0 0 1 1 0 0 补码,符号位不变,数值位取反+1
故:[X]补=11001100B,[X]反=11001011B。
(2) 已知补码,求原码。
分析:按照求负数补码的逆过程,数值部分应是最低位减1,然后取反。但是对二进制数来说,先减1后取反和先取反后加1得到的结果是一样的,故仍可采用取反加1 有方法。
例:已知某数X的补码11101110B,试求其原码。
解:由[X]补=11101110B知,X为负数。
1 1 1 0 1 1 1 0 补码
1 1 1 0 1 1 0 1 反码(符号位不变,数值位取反加1)
1 0 0 1 0 0 1 0 原码(符号位不变,数值位取反)
关于补码的补充例子:
一个正的整数的补码就是这个整数变成二进制的值。
举例:一个int型变量i=10,其二进制补码就是0000 0000 0000 0000 0000 0000 0000 1010(0x0000000A)
2. 一个负整数的二进制补码,就是该负数的绝对值所对应的补码全部取反后加1.
举例:int i=-10的补码如何求得:
先求-10的绝对值10的补码是0000 0000 0000 0000 0000 0000 0000 1010(0x0000000A);
再将求得的补码取反: 1111 1111 1111 1111 1111 1111 1111 0101
再将取反后得到的补码加1: 1111 1111 1111 1111 1111 1111 1111 0101 + 1
即可得到-10的二进制补码: 1111 1111 1111 1111 1111 1111 1111 0110(0xFFFFFFF6)
3. +0和-0的二进制补码都是0
首先+0的二进制补码是0;
-0的二进制补码是+0的二进制补码取反后加1,+0的二进制补码为0,取反后为FFFFFFFF,加1后还是0
原码和反码在数值0都有二意,唯有补码在数值0是唯一的码值!
在计算机系统中,数据,一律采用补码表示和存储。
原码和反码,在计算机中,都是不存在的。
想要了解补码,还得从小学说起。
大概是在小学二年级吧,就学过进位了。
两位十进制数是:0 ~ 99。
那么有:27 + 99 = (一百) 26
也可以:27 - 1 = 26
如果你忽略进位,依然保持两位数,这两种算法的功能,就是完全相同的。
如果在计算机中舍弃进位:
● 负数,就能用正数(即补码)代替;
● 用加法,也就实现了减法运算。
所谓的补码,就是一个【代替负数的正数】。
补码的来源,就是【舍弃进位】!
----------
两位十进制数,舍弃进位,就是减去一百。
因此,+99、-100,当然就是-1 了。
·
八位二进制数:0000 0000 ~ 1111 1111。
也就是十进制:0 ~ 255。
如果出现进位:2^8 = 256。
此时,+255 (1111 1111)、再舍弃进位,也就是-1 了。
同理,+254 (1111 1110),也就是-2。
。。。
以上这些正数,就“计算机专家发明的补码”了。
你说可笑不?
而原本就是正数,当然就不用再用别的正数来代替了。
也可以说:零和正数的补码,就是它自己。
----------
补码的来源:就是【舍弃进位】!
所谓的:机器数真值符号位原码反码取反加一,都是忽悠!