设向量a为n维列向量,a^t*a=1,令H=E-2a*a^t,证明H是正交矩阵
1个回答
展开全部
H^TH = (E-2aa^t)^T(E-2aa^t)
= (E-2aa^t)(E-2aa^t)
= E-2aa^t-2aa^t+4aa^taa^t
= E-4aa^t + 4 a(a^ta)a^t
= E - 4aa^t + 4aa^t
= E
所以H是正交矩阵.
= (E-2aa^t)(E-2aa^t)
= E-2aa^t-2aa^t+4aa^taa^t
= E-4aa^t + 4 a(a^ta)a^t
= E - 4aa^t + 4aa^t
= E
所以H是正交矩阵.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询