用定义证明f(x)=(ax+1)/(x+2),(a不等于0.5) 在(负无穷,-2)上的单调性
1个回答
展开全部
f(x)=(ax+1)/(x+2)
=(ax+2a-2a+1)/(x+2)
=(a(x+2)-2a+1)/(x+2)
=a-(2a-1)/(x+2)
在(-∞,-2)上任取x1<x2
f(x1)-f(x2)
=a-(2a-1)/(x1+2)-(a-(2a-1)/(x2+2))
=-(2a-1)/(x1+2)+(2a-1)/(x2+2)
=(2a-1)(1/(x2+2)-1/(x1+2))
=(2a-1)(x1+2-x2-2)/((x1+2)(x2+2))
=(2a-1)(x1-x2)/((x1+2)(x2+2))
因为x1,x2∈(-∞,-2),x1<x2
所以(x1-x2)/((x1+2)(x2+2))<0
因此当(2a-1)>0,即a>1/2时
(2a-1)(x1-x2)/((x1+2)(x2+2))<0
f(x1)<f(x2),f(x)是增函数
因此当(2a-1)<0,即a<1/2时
(2a-1)(x1-x2)/((x1+2)(x2+2))>0
f(x1)>f(x2),f(x)是减函数
=(ax+2a-2a+1)/(x+2)
=(a(x+2)-2a+1)/(x+2)
=a-(2a-1)/(x+2)
在(-∞,-2)上任取x1<x2
f(x1)-f(x2)
=a-(2a-1)/(x1+2)-(a-(2a-1)/(x2+2))
=-(2a-1)/(x1+2)+(2a-1)/(x2+2)
=(2a-1)(1/(x2+2)-1/(x1+2))
=(2a-1)(x1+2-x2-2)/((x1+2)(x2+2))
=(2a-1)(x1-x2)/((x1+2)(x2+2))
因为x1,x2∈(-∞,-2),x1<x2
所以(x1-x2)/((x1+2)(x2+2))<0
因此当(2a-1)>0,即a>1/2时
(2a-1)(x1-x2)/((x1+2)(x2+2))<0
f(x1)<f(x2),f(x)是增函数
因此当(2a-1)<0,即a<1/2时
(2a-1)(x1-x2)/((x1+2)(x2+2))>0
f(x1)>f(x2),f(x)是减函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询