利用对数性质
(cosx)^(1/x^2)=e^[ln(cosx)^(1/x^2)]
=e^(1/x^2 * lncosx)
=e^(lncosx/x^2)
只要对指数部分求极限即可,有两种方法:
一、等价无穷小ln(1+x)~x,1-cosx~ x^2/2
lim(lncosx/x^2)=lim ln[1+(cosx-1)]/x^2
=lim (cosx-1)/x^2
=lim (-x^2/2)/x^2
=-1/2
二、利用洛必达法则分子分母求导及公式lim sinx/x=1
lim(lncosx/x^2)=lim (-sinx/cosx)/2x
=lim (-1/2cosx)
=-1/2
所以原式=lim e^(lncosx/x^2)
=e^lim(lncosx/x^2)
=e^(-1/2)
扩展资料:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。
有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和.可见问题转化为计算真分式的积分.
可以证明,任何真分式总能分解为部分分式之和。
参考资料来源:百度百科--不定积分
结果为:e^(-1/2)
解题过程如下:
(cosx)^(1/x^2)=e^[ln(cosx)^(1/x^2)]
=e^(1/x^2 * lncosx)
=e^(lncosx/x^2)
=lim(lncosx/x^2)
=lim (-sinx/cosx)/2x
=lim (-1/2cosx)
=-1/2
所以原式=lim e^(lncosx/x^2)
=e^lim(lncosx/x^2)
=e^(-1/2)
扩展资料
求函数极限的方法:
利用函数连续性,直接将趋向值带入函数自变量中,此时要要求分母不能为0。
当分母等于零时,就不能将趋向值直接代入分母,因式分解,通过约分使分母不会为零。若分母出现根号,可以配一个因子使根号去除。
如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
采用洛必达法则求极限,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。符合形式的分式的极限等于分式的分子分母同时求导。
(cosx)^(1/x^2)=e^[ln(cosx)^(1/x^2)]
=e^(1/x^2 * lncosx)
=e^(lncosx/x^2)
只要对指数部分求极限即可,有两种方法:
一,等价无穷小ln(1+x)~x,1-cosx~ x^2/2.
lim(lncosx/x^2)=lim ln[1+(cosx-1)]/x^2
=lim (cosx-1)/x^2
=lim (-x^2/2)/x^2
=-1/2
二,利用洛必达法则分子分母求导及公式lim sinx/x=1.
lim(lncosx/x^2)=lim (-sinx/cosx)/2x
=lim (-1/2cosx)
=-1/2
所以原式=lim e^(lncosx/x^2)
=e^lim(lncosx/x^2)
=e^(-1/2)