数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考...
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程; 展开
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程; 展开
8个回答
展开全部
25.解:(1)正确. ……1分
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF. ……3分
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF. ……5分
∴△AME≌△BCF(ASA). ……6分
∴AE=EF.
(2)正确. ……7分
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE. ……8分
∴∠N=∠FCE=45°. ……9分
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF. ……10分
∴△ANE≌△ECF(ASA). ……11分
∴AE=EF. ……12分
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF. ……3分
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF. ……5分
∴△AME≌△BCF(ASA). ……6分
∴AE=EF.
(2)正确. ……7分
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE. ……8分
∴∠N=∠FCE=45°. ……9分
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF. ……10分
∴△ANE≌△ECF(ASA). ……11分
∴AE=EF. ……12分
展开全部
解:(1)正确.理由如下:
证明:在BA延长线上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.理由如下:
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
∴AE=EF.
证明:在BA延长线上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.理由如下:
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
∴AE=EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
答案:解:(1)正确
证明:在上取一点,使AM=EC,连接
∵AB=BC
∴BM=BE,∠BME=45°,∠AME=135°
∵CF是外角平分线
∴∠DCF=45°,∠ECF=135°
∴∠AME=∠ECF
∵∠AEF=90°
∴∠AEB+∠CEF=90°
又∵∠AEB+∠MAE=90°
∴∠MAE=∠CEF
在△AME与△ECF中
∴△AME≌△ECF(SAS)
∴AE=EF
(2)正确
证明:在的延长线上取一点.使AN=CE,连接NE
∵BA=BC
∴BN=BE
∴∠N=∠PCE=45°
∵四边形是正方形,
∴AD∥BE
∴∠DAE=∠BEA,
∵∠NAD=∠AEF=90°
∴∠NAE=∠CEF
在△ANE与△ECF中
∴△ANE≌△ECF(SAS)
∴AE=EF
证明:在上取一点,使AM=EC,连接
∵AB=BC
∴BM=BE,∠BME=45°,∠AME=135°
∵CF是外角平分线
∴∠DCF=45°,∠ECF=135°
∴∠AME=∠ECF
∵∠AEF=90°
∴∠AEB+∠CEF=90°
又∵∠AEB+∠MAE=90°
∴∠MAE=∠CEF
在△AME与△ECF中
∴△AME≌△ECF(SAS)
∴AE=EF
(2)正确
证明:在的延长线上取一点.使AN=CE,连接NE
∵BA=BC
∴BN=BE
∴∠N=∠PCE=45°
∵四边形是正方形,
∴AD∥BE
∴∠DAE=∠BEA,
∵∠NAD=∠AEF=90°
∴∠NAE=∠CEF
在△ANE与△ECF中
∴△ANE≌△ECF(SAS)
∴AE=EF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
25.解:(1)正确.
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
∴AE=EF.
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
∴AE=EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)正确.
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询