高二圆的方程

一直P(x,y)是圆x²+(y+4)²=4上任意一点,则√[(x-1)²+(y-1)²]的最大值题目忘记发了... 一直P(x,y)是圆x²+(y+4)²=4上任意一点,则√[(x-1)²+(y-1)²]的最大值

题目忘记发了
展开
松_竹
2010-11-18 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1403
采纳率:0%
帮助的人:2993万
展开全部
点(1,1)在圆x²+(y+4)²=4外,
点(1,1)到圆心(0,-4)的距离为√26,圆的半径为2,
∴圆上一点P到点(1,1)的距离的最大值为√26+2,
而√[(x-1)²+(y-1)²]表示点P(x,y)到点(1,1)的距离,
∴√[(x-1)²+(y-1)²] 的最大值为√26+2
百度网友2de1564
2010-11-18 · TA获得超过6314个赞
知道小有建树答主
回答量:828
采纳率:0%
帮助的人:330万
展开全部
方法很多。推荐用几何法做。
√[(x-1)²+(y-1)²]的几何意义是,圆x²+(y+4)²=4上的点到点(1,1)的距离。也就是说,本题是问圆上哪个点到(1,1)最远,这个距离又是多少。
于是问题迎刃而解。圆外一点到圆上最远距离和最近距离的求法,就是过圆外点向圆心引直线,交圆于两点,这两个点分别是圆上到圆外那个点的最远的点和最近的点。
所以,列出这个直线的方程。直线过圆心(0,-2)和(1,1),两点式求出直线方程①。再列出圆的方程x²+(y+4)²=4 ②。由①②两个式子求出两组(x,y),进行讨论。显然,第四象限的那个点是√[(x-1)²+(y-1)²]最小的点,第三象限那个点是使√[(x-1)²+(y-1)²]最大的点。取后者,把x,y代入√[(x-1)²+(y-1)²]求出最大值。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
看云小子
2010-11-18 · TA获得超过7719个赞
知道小有建树答主
回答量:612
采纳率:0%
帮助的人:622万
展开全部
用数形结合法做这道题,先将圆x²+(y+4)²=4做出来,√[(x-1)²+(y-1)²]可以表示为一点到(1,1)点的距离,因为x,y都是圆上的点,所以在圆上找一点到(1,1)点的距离最大即可。这个直接在图上直观的看出来。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhangdbai
2010-11-18 · TA获得超过1253个赞
知道小有建树答主
回答量:402
采纳率:100%
帮助的人:459万
展开全部
就是一个圆n=(x-1)²+(y-1)²外切与x²+(y+4)²=4的时候取最大值
就是√[(x-1)²+(y-1)²],就是大圆半径=(2+根号26)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式