(2010?成都)如图,△ABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,P是BC边
(2010?成都)如图,△ABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,P是BC边上一点,连接AD、DC、AP.已知AB=8,CP...
(2010?成都)如图,△ABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,P是BC边上一点,连接AD、DC、AP.已知AB=8,CP=2,Q是线段AP上一动点,连接BQ并延长交四边形ABCD的一边于点R,且满足AP=BR,则BQQR的值为______.
展开
展开全部
解:∵△ABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,
∴四边形ABCD是正方形.
∴AD∥BC,
当AP=BR时,分两种情况:
①点R在线段AD上,
∵AD∥BC,
∴∠ARB=∠PBR,∠RAQ=∠APB,
在△AQR与△PQB中,
∵
,
∴△AQR≌△PQB,
∴BQ=QR
∴BQ:QR=1;
②点R在线段CD上,此时△ABP≌△BCR,
∴∠BAP=∠CBR.
∵∠CBR+∠ABR=90°,
∴∠BAP+∠ABR=90°,
∴BQ是直角△ABP斜边上的高,
∴BQ=
=
=4.8,
∴QR=BR-BQ=10-4.8=5.2,
∴BQ:QR=4.8:5.2=
.
故答案为:1或
.
∴四边形ABCD是正方形.
∴AD∥BC,
当AP=BR时,分两种情况:
①点R在线段AD上,
∵AD∥BC,
∴∠ARB=∠PBR,∠RAQ=∠APB,
在△AQR与△PQB中,
∵
|
∴△AQR≌△PQB,
∴BQ=QR
∴BQ:QR=1;
②点R在线段CD上,此时△ABP≌△BCR,
∴∠BAP=∠CBR.
∵∠CBR+∠ABR=90°,
∴∠BAP+∠ABR=90°,
∴BQ是直角△ABP斜边上的高,
∴BQ=
AB?BP |
AP |
8×6 |
10 |
∴QR=BR-BQ=10-4.8=5.2,
∴BQ:QR=4.8:5.2=
12 |
13 |
故答案为:1或
12 |
13 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询