(2012?朝阳一模)已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线

(2012?朝阳一模)已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tanC=12,求⊙O的直径.... (2012?朝阳一模)已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tanC=12,求⊙O的直径. 展开
 我来答
波澜丹山8453
2014-10-14 · 超过78用户采纳过TA的回答
知道答主
回答量:147
采纳率:50%
帮助的人:58.1万
展开全部
解答:(1)证明:连接OD.
∵D为AC中点,O为AB中点,
∴OD为△ABC的中位线,
∴OD∥BC,
∵DE⊥BC,
∴∠DEC=90°,
∴∠ODE=∠DEC=90°,
∴OD⊥DE于点D,
∴DE为⊙O的切线;

(2)解:连接DB,
∵AB为⊙O的直径,
∴∠ADB=90°,
∴DB⊥AC,
∴∠CDB=90°
∵D为AC中点,
∴AB=BC,
在Rt△DEC中,
∵DE=2,tanC=
1
2

∴EC=
DE
tanC
=4

由勾股定理得:DC=2
5

在Rt△DCB中,BD=DC?tanC=
5

由勾股定理得:BC=5,
∴AB=BC=5,
∴⊙O的直径为5.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式