如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、

如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线... 如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明. 展开
 我来答
纯洁小歪172
推荐于2017-12-15 · TA获得超过103个赞
知道答主
回答量:109
采纳率:0%
帮助的人:141万
展开全部
(1)证明:连接PD、PE、QD、QE.
因为CE⊥AB,P是BF的中点,
所以△BEF是直角三角形,且
PE是Rt△BEF斜边的中线,
所以PE=
1
2
BF.
又因为AD⊥BC,
所以△BDF是直角三角形,且PD是Rt△BDF斜边的中线,
所以PD=
1
2
BF=PE,
所以点P在线段DE的垂直平分线上.
同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,
所以QD=
1
2
AC=QE,
所以点Q也在线段DE的垂直平分线上.
所以直线PQ垂直平分线段DE.

(2)当△ABC为钝角三角形时,(1)中的结论仍成立.
如图,△ABC是钝角三角形,∠BAC>90°.
原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.

求证:直线PQ垂直且平分线段DE.
证明:连接PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,
所以PD=
1
2
BF,PE=
1
2
BF,
所以PD=PE,
点P在线段DE的垂直平分线上.
同理可证QD=QE,
所以点Q在线段DE的垂直平分线上.
所以直线PQ垂直平分线段DE.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式