设Sn=1^2-2^2+3^-4^2+...+(-1)^(n-1)*n^2,猜想Sn关于n的表达式并用数学归纳法证明
1个回答
展开全部
分别考虑n是奇数和偶数的情况,
当n=2k时,k=1,2,3,...
Sn=1²-2²+3²-4²+...+(2k-1)²-2k²+...
=-(2-1)(2+1)-(4+3)(4-3)-...-(2k-2k+1)(2k+2k-1)-...
=-3-7-...-(4k-1)-...
为等差数列,通项为-(4k-1),前2k项和
S(2k)=-(3+4k-1)k/2=-(2k+1)k
当n=2k-1,k=1,2,3,...
Sn=1²-2²+3²-4²+...-(2k-2)²+(2k-1)²-...
=1+(3-2)(3+2)+(5+4)(5-4)+...+(2k-1-2k+2)(2k-1+2k-2)+...
=1+5+9+...+(4k-3)+...
为等差数列,通项为4k-3,前2k-1项和
S(2k-1)=(1+4k-3)k/2=(2k-1)k
用数学归纳法证明:
当n=1时,S(1)=1,n为奇数,S(2×1-1)=(2×1-1)×1=1
当n=2时,S(2)=-3,n为偶数,S(2×1)=-(2×1+1)×1=-3
假设当k=m时成立,即n=2m(m=1,2,3,....)和n=2m-1(m=1,2,3,....)成立
S(2k)=-(3+4m-1)m/2=-(2m+1)m
S(2k-1)=(1+4m-3)m/2=(2m-1)m
当k=m+1时,即n=2m+2和n=2m+1时
S(2k)=S(2m)+(2m+1)²-(2m+2)²=-(2m+1)m-(4m+3)=-(2m+3)(m+1)=-(2k+1)k
S(2k-1)=S(2m-1)-(2m)²+(2m+1)²=(2m-1)m+(4m+1)=(2m+1)(m+1)=(2k-1)k
成立,所以猜想成立
当n=2k时,k=1,2,3,...
Sn=1²-2²+3²-4²+...+(2k-1)²-2k²+...
=-(2-1)(2+1)-(4+3)(4-3)-...-(2k-2k+1)(2k+2k-1)-...
=-3-7-...-(4k-1)-...
为等差数列,通项为-(4k-1),前2k项和
S(2k)=-(3+4k-1)k/2=-(2k+1)k
当n=2k-1,k=1,2,3,...
Sn=1²-2²+3²-4²+...-(2k-2)²+(2k-1)²-...
=1+(3-2)(3+2)+(5+4)(5-4)+...+(2k-1-2k+2)(2k-1+2k-2)+...
=1+5+9+...+(4k-3)+...
为等差数列,通项为4k-3,前2k-1项和
S(2k-1)=(1+4k-3)k/2=(2k-1)k
用数学归纳法证明:
当n=1时,S(1)=1,n为奇数,S(2×1-1)=(2×1-1)×1=1
当n=2时,S(2)=-3,n为偶数,S(2×1)=-(2×1+1)×1=-3
假设当k=m时成立,即n=2m(m=1,2,3,....)和n=2m-1(m=1,2,3,....)成立
S(2k)=-(3+4m-1)m/2=-(2m+1)m
S(2k-1)=(1+4m-3)m/2=(2m-1)m
当k=m+1时,即n=2m+2和n=2m+1时
S(2k)=S(2m)+(2m+1)²-(2m+2)²=-(2m+1)m-(4m+3)=-(2m+3)(m+1)=-(2k+1)k
S(2k-1)=S(2m-1)-(2m)²+(2m+1)²=(2m-1)m+(4m+1)=(2m+1)(m+1)=(2k-1)k
成立,所以猜想成立
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询