已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax....
已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.(1)当a=-2时,求函数f(x)的解析式;(2)若函数f(x)为单调递减函数;①直接写出...
已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax. (1)当a=-2时,求函数f(x)的解析式; (2)若函数f(x)为单调递减函数; ①直接写出a的范围(不必证明); ②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.
展开
1个回答
展开全部
解:(1)当x<0时,-x>0,又因为f(x)为奇函数,
所以f(x)=-f(-x)=-(-x2+2x)=x2-2x,
所以f(x)={-x2-2x,x≥0x2-2x,x<0.
(2)①当a≤0时,对称轴x=a2≤0,所以f(x)=-x2+ax在[0,+∞)上单调递减,
由于奇函数关于原点对称的区间上单调性相同,所以f(x)在(-∞,0)上单调递减,
所以a≤0时,f(x)在R上为单调递减函数,
当a>0时,f(x)在(0,a2)递增,在(a2,+∞)上递减,不合题意,
所以函数f(x)为单调减函数时,a的范围为a≤0.
②f(m-1)+f(m2+t)<0,∴f(m-1)<-f(m2+t),
又f(x)是奇函数,∴f(m-1)<f(-t-m2),
又因为f(x)为R上的单调递减函数,所以m-1>-t-m2恒成立,
所以t>-m2-m+1=-(m+12)2+54恒成立,所以t>54.
即实数t的范围为:(54,+∞).
所以f(x)=-f(-x)=-(-x2+2x)=x2-2x,
所以f(x)={-x2-2x,x≥0x2-2x,x<0.
(2)①当a≤0时,对称轴x=a2≤0,所以f(x)=-x2+ax在[0,+∞)上单调递减,
由于奇函数关于原点对称的区间上单调性相同,所以f(x)在(-∞,0)上单调递减,
所以a≤0时,f(x)在R上为单调递减函数,
当a>0时,f(x)在(0,a2)递增,在(a2,+∞)上递减,不合题意,
所以函数f(x)为单调减函数时,a的范围为a≤0.
②f(m-1)+f(m2+t)<0,∴f(m-1)<-f(m2+t),
又f(x)是奇函数,∴f(m-1)<f(-t-m2),
又因为f(x)为R上的单调递减函数,所以m-1>-t-m2恒成立,
所以t>-m2-m+1=-(m+12)2+54恒成立,所以t>54.
即实数t的范围为:(54,+∞).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询