证明三角函数恒等式?
2个回答
展开全部
sec(-α)+sin(-α-π/2)
=secα-sin(α+π/2)
=secα-cos[π/2-(α+π/2)]
=secα-cosα
csc(3π-α)-cos(-α-3π/2)
=csc(π-α)-cos(π/2-α)
=cscα-sinα
所以原式=(secα-cosα)/(cscα-sinα)
=(1-cos²α)sinα/[(1-sin²α)cosα]
=sin³α/cos³α
=tan³α
=secα-sin(α+π/2)
=secα-cos[π/2-(α+π/2)]
=secα-cosα
csc(3π-α)-cos(-α-3π/2)
=csc(π-α)-cos(π/2-α)
=cscα-sinα
所以原式=(secα-cosα)/(cscα-sinα)
=(1-cos²α)sinα/[(1-sin²α)cosα]
=sin³α/cos³α
=tan³α
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询