如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).(1)求过A、B、C
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).(1)求过A、B、C三点的抛物线解析式;(2)若点P从A点出发,沿x轴正方向以...
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).(1)求过A、B、C三点的抛物线解析式;(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;①求S与t的函数关系式;②当t是多少时,△PBF的面积最大,最大面积是多少?(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
展开
1个回答
展开全部
(1)(法一)设抛物线的解析式为y=ax2+bx+c(a≠0),把A(-1,0),B(5,0),C(0,2)三点代入解析式得:
,
解得
;
∴y=?
x2+
x+2;(3分)
(法二)设抛物线的解析式为y=a(x-5)(x+1),
把(0,2)代入解析式得:2=-5a,
∴a=?
;
∴y=?
(x+1)(x?5),
即y=?
x2+
x+2;(3分)
(2)①过点F作FD⊥x轴于D,
当点P在原点左侧时,BP=6-t,OP=1-t;
在Rt△POC中,∠PCO+∠CPO=90°,
∵∠FPD+∠CPO=90°,
∴∠PCO=∠FPD;
∵∠POC=∠FDP,
∴△CPO∽△PFD,(5分)
∴
=
;
∵PF=PE=2PC,
∴FD=2PO=2(1-t);(6分)
∴S△PBF=
BP×DF=t2-7t+6(0≤t<1);(8分)
当点P在原点右侧时,OP=t-1,BP=6-t;
∵△CPO∽△PFD,(9分)
∴FD=2(t-1);
∴S△PBF=
BP×DF=-t2+7t-6(1<t<6);(11分)
②当0≤t<1时,S=t2-7t+6;
此时t在t=3.5的左侧,S随t的增大而减小,则有:
当t=0时,Smax=0-7×0+6=6;
当1<t<6时,S=-t2+7t-6;
由于1<3.5<6,故当t=3.5时,Smax=-3.5×3.5+7×3.5+6=6.25;
综上所述,当t=3.5时,面积最大,且最大值为6.25.
|
解得
|
∴y=?
2 |
5 |
8 |
5 |
(法二)设抛物线的解析式为y=a(x-5)(x+1),
把(0,2)代入解析式得:2=-5a,
∴a=?
2 |
5 |
∴y=?
2 |
5 |
即y=?
2 |
5 |
8 |
5 |
(2)①过点F作FD⊥x轴于D,
当点P在原点左侧时,BP=6-t,OP=1-t;
在Rt△POC中,∠PCO+∠CPO=90°,
∵∠FPD+∠CPO=90°,
∴∠PCO=∠FPD;
∵∠POC=∠FDP,
∴△CPO∽△PFD,(5分)
∴
FD |
PO |
PF |
PC |
∵PF=PE=2PC,
∴FD=2PO=2(1-t);(6分)
∴S△PBF=
1 |
2 |
当点P在原点右侧时,OP=t-1,BP=6-t;
∵△CPO∽△PFD,(9分)
∴FD=2(t-1);
∴S△PBF=
1 |
2 |
②当0≤t<1时,S=t2-7t+6;
此时t在t=3.5的左侧,S随t的增大而减小,则有:
当t=0时,Smax=0-7×0+6=6;
当1<t<6时,S=-t2+7t-6;
由于1<3.5<6,故当t=3.5时,Smax=-3.5×3.5+7×3.5+6=6.25;
综上所述,当t=3.5时,面积最大,且最大值为6.25.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载