初二几何证明
展开全部
把△ABP向右平移,到AB与CD重合。设此时P移到Q。连接PQ可知ADQP与PQCB都为平行四边形,设PQ与CD交点为E.
∵ABCD是平行四边形
∴∠ABC=∠ADC
∵∠ABP=∠ADP
∴∠PDC=∠PBC=∠PQC
∵∠PED=∠CEQ
∴△PED∽△CEQ
∴PE/CE=DE/EQ
∴PE/ED=CE/EQ
∵∠PEC=∠DEQ
∴△PEC∽△DEQ
∴∠EDQ=∠EPC=∠PCB
∵∠EDQ=∠BAP
∴∠BAP=∠BCP
如果你学了四点共圆,可以这么做:
过P作PE//DA(E在P左边),并使PE=DA,连坦世世接AE、BE
显让肢然四边形ADPE和BCPE都是平行四边形
∴∠PEB=∠PCB=∠PAB,∠PEA=∠PDA
∴P、A、E、B四返举点共圆
∴∠PEA=∠PBA
∴∠PBA=∠PDA
∵ABCD是平行四边形
∴∠ABC=∠ADC
∵∠ABP=∠ADP
∴∠PDC=∠PBC=∠PQC
∵∠PED=∠CEQ
∴△PED∽△CEQ
∴PE/CE=DE/EQ
∴PE/ED=CE/EQ
∵∠PEC=∠DEQ
∴△PEC∽△DEQ
∴∠EDQ=∠EPC=∠PCB
∵∠EDQ=∠BAP
∴∠BAP=∠BCP
如果你学了四点共圆,可以这么做:
过P作PE//DA(E在P左边),并使PE=DA,连坦世世接AE、BE
显让肢然四边形ADPE和BCPE都是平行四边形
∴∠PEB=∠PCB=∠PAB,∠PEA=∠PDA
∴P、A、E、B四返举点共圆
∴∠PEA=∠PBA
∴∠PBA=∠PDA
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询