(2013?河南)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=kx(x>0)的图
(2013?河南)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=kx(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(...
(2013?河南)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=kx(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.
展开
1个回答
展开全部
(1)∵BC∥x轴,点B的坐标为(2,3),
∴BC=2,
∵点D为BC的中点,
∴CD=1,
∴点D的坐标为(1,3),
代入双曲线y=
(x>0)得k=1×3=3;
∵BA∥y轴,
∴点E的横坐标与点B的横坐标相等,为2,
∵点E在双曲线上,
∴y=
∴点E的坐标为(2,
);
(2)∵点E的坐标为(2,
),B的坐标为(2,3),点D的坐标为(1,3),
∴BD=1,BE=
,BC=2
∵△FBC∽△DEB,
∴
=
即:
=
∴FC=
∴点F的坐标为(0,
)
设直线FB的解析式y=kx+b(k≠0)
则
解得:k=
,b=
∴直线FB的解析式y=
x+
∴BC=2,
∵点D为BC的中点,
∴CD=1,
∴点D的坐标为(1,3),
代入双曲线y=
k |
x |
∵BA∥y轴,
∴点E的横坐标与点B的横坐标相等,为2,
∵点E在双曲线上,
∴y=
3 |
2 |
∴点E的坐标为(2,
3 |
2 |
(2)∵点E的坐标为(2,
3 |
2 |
∴BD=1,BE=
3 |
2 |
∵△FBC∽△DEB,
∴
CF |
DB |
BC |
EB |
即:
CF |
1 |
2 | ||
|
∴FC=
4 |
3 |
∴点F的坐标为(0,
5 |
3 |
设直线FB的解析式y=kx+b(k≠0)
则
|
解得:k=
2 |
3 |
5 |
3 |
∴直线FB的解析式y=
2 |
3 |
5 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询