平面x+y+z=0到底长什么样
如图所示:
根据平面的点法式方程得出
设一平面通过已知点M0(x1,y1,z1)且垂直于非零向量n=(A,B,C),则有:
A(x-x1)+B(y-y1)+C(z-z1)=0
上式称为平面的点法式方程
由x+y+z=0可知,该平面通过原点(因为D=0),当D=0时,Ax+By+Cz=0的平面过原点
将原点代入平面的点法式方程得
Ax+By+Cz=0
即A=1,B=1,C=1
法向量n=(1,1,1)
扩展资料
法向量的主要应用如下:
1、求斜线与平面所成的角:求出平面法向量和斜线的夹角,这个角和斜线与平面所成的角互余.利用这个原理也可以证明线面平行;
2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补;
3、点到面的距离: 任一斜线(平面为一点与平面内的连线)在法向量方向的射影;
如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量)。
利用这个原理也可以求异面直线的距离。
平面x+y+z=0的图形在-5<x<5,-5<y<5的形状如下图:
1、空间指教坐标系里有三个参数:X、Y、Z,分别代表三个轴。
空间直角坐标系x+y+1=0表示一个与Z轴平行的一个面。
2、平面直角坐标系有两个参数:X、Y,代表两个轴。
平面直角坐标系x+y+1=0表示一个穿过第三象限过(0,-1)和(-1,0)两点直线。
空间解析几何相似,为了确定空间中任意一点的位置,需要在空间中引进坐标系。
扩展资料:
取定空间直角坐标系O-xyz后,就可以建立空间的点与一个有序数组之间的一一对应关系。
设点M为空间的一点,过点M分别作垂直于x轴、y轴和z轴的平面。设三个平面与x轴、y轴和z轴的交点依次为P、Q、R,点P、Q、R分别称为点M在x轴、y轴和z轴上的投影。又设点P、Q、R在x轴、y轴和z轴上的坐标依次为x、y、z,于是点M确定了一个有序数组x,y,z。
反之,如果给定一个有序数组x,y,z,可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后点P、Q、R分别作垂直于x轴、y轴和z轴的三个平面,它们相交于空间的一点M,点M就是由有序数组x,y,z所确定的点。
这样一来,空间的点M与有序数组x,y,z之间就建立了一一对应的关系。把有序数组x,y,z称为点M的坐标,记作M(x,y,z),其中x称为横坐标、y称为纵坐标、z称为竖坐标。
原点的坐标为(0,0,0);若点M在x轴上,则其坐标为(x,0,0);同样对于y轴上的点,其坐标是(0,y,0);对于z轴上的点,其坐标为(0,0,z)。
平面x+y+z=0的图形在-5<x<5,-5<y<5的形状如下图:
1、空间指教坐标系里有三个参数:X、Y、Z,分别代表三个轴。
空间直角坐标系x+y+1=0表示一个与Z轴平行的一个面。
2、平面直角坐标系有两个参数:X、Y,代表两个轴。
平面直角坐标系x+y+1=0表示一个穿过第三象限过(0,-1)和(-1,0)两点直线。
空间解析几何相似,为了确定空间中任意一点的位置,需要在空间中引进坐标系。
扩展资料:
取定空间直角坐标系O-xyz后,就可以建立空间的点与一个有序数组之间的一一对应关系。
设点M为空间的一点,过点M分别作垂直于x轴、y轴和z轴的平面。设三个平面与x轴、y轴和z轴的交点依次为P、Q、R,点P、Q、R分别称为点M在x轴、y轴和z轴上的投影。又设点P、Q、R在x轴、y轴和z轴上的坐标依次为x、y、z,于是点M确定了一个有序数组x,y,z。
反之,如果给定一个有序数组x,y,z,可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后点P、Q、R分别作垂直于x轴、y轴和z轴的三个平面,它们相交于空间的一点M,点M就是由有序数组x,y,z所确定的点。
这样一来,空间的点M与有序数组x,y,z之间就建立了一一对应的关系。把有序数组x,y,z称为点M的坐标,记作M(x,y,z),其中x称为横坐标、y称为纵坐标、z称为竖坐标。
原点的坐标为(0,0,0);若点M在x轴上,则其坐标为(x,0,0);同样对于y轴上的点,其坐标是(0,y,0);对于z轴上的点,其坐标为(0,0,z)。