如图,在等腰梯形abcd中对角线ac、bd相互垂直,该梯形的高与中位线又怎样的大小关系
3个回答
展开全部
解:过点D作DE‖AC,交BC的延长线于点E.
∵AC⊥BD,DE‖AC
∴BD⊥DE
∵梯形ABCD是等腰梯形,
∴AC=BD
在⊿BDE中,BD⊥DE,DE=AC=BD
∴BE=√2BD
梯形的中位线长就等于等腰直角三角形BDE的中位线长,是1/2BE=√2/2BD
∵⊿BDE是等腰直角三角形,
∴BE边上的高是1/2BE=√2/2BD
由此可知:这个梯形的高等于它的中位线长。
∵AC⊥BD,DE‖AC
∴BD⊥DE
∵梯形ABCD是等腰梯形,
∴AC=BD
在⊿BDE中,BD⊥DE,DE=AC=BD
∴BE=√2BD
梯形的中位线长就等于等腰直角三角形BDE的中位线长,是1/2BE=√2/2BD
∵⊿BDE是等腰直角三角形,
∴BE边上的高是1/2BE=√2/2BD
由此可知:这个梯形的高等于它的中位线长。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图呢
应该相等
应该相等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询