一个圆的圆心在直线X-Y-1=0,与直线4X=3Y+14=0相切,且被直线3X+4Y+10=0截得的弦长为6,求圆的方程。

 我来答
奕义永子
2020-04-10 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:31%
帮助的人:949万
展开全部
首先,圆心在直线l1:x-y-1=0上,则不妨设圆心坐标为(a,a-1)
因为圆与直线l2:4x+3y+14=0相切,则由点到线的距离公式得出
半径R=D=[4a+3(a-1)+14]/5=(7a+11)/5
圆在直线l3:3x+4y+10=0上截得弦长为6,则由点到线的距离公式得出
圆心到l3的距离d=[3a+4(a-1)+10]/5=(7a+6)/5
由此,你画一个图观察,过圆心做l3的垂线,弦长被一分为二,可以得出
弦长L一半的平方+d的平方=R的平方.
所以可以得出关系式:(6/2)^2+[7a+6/5]^2=[7a+11/5]^2
解上式,得a=2
所以圆心坐标为(2,1),半径R=5
圆的方程为(x-2)^2+(y-1)^2=25
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式