已知函数f(x)=sin(2wx-π/6)+1/2的最小周期为π,求w的值,求函数f(x)在区间[0,2π/3]上的取值范围

463604827
2010-11-30 · TA获得超过113个赞
知道答主
回答量:48
采纳率:0%
帮助的人:45万
展开全部
周期T=2π/2w=π,求出w=1。所以原式为f(x)=sin(2x-π/6)+1/2
因为x定义域为[0,2π/3],
所以2x-π/6属于[-π/6,7π/6]
当X=π/3时,2x-π/6=π/2
此时取的最大值f(π/3)=3/2
当x=0或x=2π/3时
此时取得最小值f(0)=f(2π/3)=0
song000622
2010-11-29 · TA获得超过1037个赞
知道小有建树答主
回答量:170
采纳率:0%
帮助的人:157万
展开全部
由题意得:
π=2π/(2w)
解得:w=1
f(x)=sin(2x-π/2)+1/2
x∈[0,2π/2]
∴-π/6<=2x-π/6<=7π/6
由sinx的图像易知:
∴-1/2=<sin(2x-π/2)<=1
∴f(x)的取值范围为[0,3/2]
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式