求函数f(x)=xe^-x的单调区间,极值,凸凹区间及拐点,并列表

 我来答
新科技17
2022-06-27 · TA获得超过5867个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:73.2万
展开全部
f(x)=xe^(-x)f'(x)=e^(-x)-xe^(-x)=(1-x)e^(-x)f''(x)=-e^(-x)-(1-x)e^(-x)=-(2-x)e^(-x)方程f'(x)=0,即(1-x)e^(-x)=0,解得x=1方程f''(x)=0,即-(2-x)e^(-x)=0,解得x=2单调区间:当x∈(-∝,1)时,f'(x)=(1-x)e^(-x)>0,...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式