设f(x)对任意X都有f(x+1)=2f(x),且f'(0)=-1/2,求f'(1)

 我来答
天罗网17
2022-06-19 · TA获得超过6194个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.5万
展开全部
一楼结果虽正确,但过程错误.
原因是题中并未告诉f(x)是否可导.
因此,直接求导不对.
需严格按导数定义
∵f(x+1)=2f(x),
取x=0
有f(1)=2f(0)
∵lim(t->1)[f(t)-f(1)]/(t-1),令t-1=x
=lim(x->0)[f(x+1)-f(1)]/x
=lim(x->0)[2f(x)-f(1)]/x
=lim(x->0)[2f(x)-2f(0)+2f(0)-f(1)]/x
=lim(x->0)2[f(x)-f(0)]/x+lim(x->0)[2f(0)-f(1)]/x
=2f'(0)+0
=-1
∴f'(1)=lim(t->1)[f(t)-f(1)]/(t-1)=-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式