如图,已知矩形ABCD延长CB到E,使CE=CA,F是AE中点,求证:BF垂直FD

 我来答
天然槑17
2022-08-26 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6517
采纳率:100%
帮助的人:37.5万
展开全部
证明:过F做FG‖AD,连接CF.
在直角梯形ADCE中,
∵FG‖AD,F为AE的中点
∴G点为CD的中点,且FG⊥CD
∴FD=FC,∠FDC=∠FCD(垂直平分线的性质)
又∵∠ADC=∠BCD=90°(矩形的性质),即∠FDC+∠ADF=∠FCD+∠BCF=90°
∴∠ADF=∠BCF(等式的性质)
又∵AD=BC(矩形的性质)
∴△ADF≌△BCF(SAS)
∴∠AFD=∠BFC(全等三角形对应角相等)
在三角形ACE中,AC=CE,点F为AE的中点(已知)
∴CF⊥AE(等角三角形的性质)
即:∠AFD+∠CFD=∠BFC+∠BFE=90°
∵∠AFD=∠BFC(已证)
∴∠CFD+∠BFC=∠BFD=90°(等量代换)
即:BF⊥FD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式