正方体ABCD-A1B1C1D1中,E、F分别是棱A1B1和B1C1的中点,求异面直线DB1与EF所成角的大小。

如上,求详细解答... 如上,求详细解答 展开
Wiityman
推荐于2016-12-01 · TA获得超过6696个赞
知道大有可为答主
回答量:901
采纳率:0%
帮助的人:515万
展开全部
设正方体的边长为a.
连接A1C1,则EF//A1C1. 取A1C1的中点为G, DD1的中点为H,连接GH, 则GH//DB1
由此,角A1GH=异面直线DB1与EF所成角。
连接A1H, 在三角形A1HG中 A1H=[根号(1+1/4)]a=[(根号5)/2]a,
A1G=[(根号2)/2]a, GH=[(根号3)/2]a
由余弦定理:cos角A1GH=[1/2+3/4-5/4]/{[2*(根号2)/2]*[(根号3)/2]}
=0.
即:异面直线DB1与EF所成角的为90度 。
xhjjh23
2010-12-01 · TA获得超过744个赞
知道答主
回答量:356
采纳率:0%
帮助的人:251万
展开全部
D1C1上点的顺序:D1、E、F、C1,
C1D1-ABCD:V1=a*a*a/2,
三棱锥F-ABP:V2=(1/3)*S(ABP)*CC1=(1/3)*(a*BP/2)*a,
三棱锥F-PCC1:V3=(1/3)*S(PCC1)*FC1=(1/3)*[a*(a-BP)/2]*FC1,
三棱锥E-APCD:V4=(1/3)*S(APCD)*DD1=(1/3)*[a*(2a-BP)/2]*a,
三棱锥E-ADD1:V5=(1/3)*S(ADD1)*ED1=(1/3)*(a*a/2)*ED1,
三棱锥F-EPF:V=V1-(V2+V3+V4+V5)=a*a*a/18+a*BP*FC1/6,
要使得V值最大,则BP、FC1取最大值,BP=a、FC1=2a/3,即C和P重合、E和D1重合
所以Vmax=a*a*a/18+a*a*(2a/3)/6=a*a*a/6。
你的串号我已经记下,采纳后我会帮你制作
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式