如图,在平面直角坐标系中,第一次将△OAB变化成△OA1B1
8个回答
展开全部
如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3);B1(4,0),B2(8,0),B3(16,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按次变化规律再将△OA3B3变换成△OA4B4,则A4的坐标是(16,3)
(16,3)
,B4的坐标是(32,0)
(32,0)
.
(2)若按第(1)题找到的规律将△OAB进行了n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标是(2n,3)
(2n,3)
.Bn的坐标是(2n+1,0)
(2n+1,0)
.
考点:坐标与图形性质.专题:规律型.分析:(1)对于A1,A2,An坐标找规律可将其写成竖列,比较从而发现An的横坐标为2n,而纵坐标都是3,同理B1,B2,Bn也一样找规律.
(2)根据第一问得出的A4的坐标和B4的坐标,再此基础上总结规律即可知A的坐标是(2n,3),B的坐标是(2n+1,0).解答:解:(1)因为A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,
同时横坐标都和2有关,为2n,那么A4(16,3);
因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,
同时横坐标都和2有关为2n+1,那么B的坐标为B4(32,0);
(2)由上题第一问规律可知An的纵坐标总为3,横坐标为2n,Bn的纵坐标总为0,横坐标为2n+1,
∴A的坐标是(2n,3),B的坐标是(2n+1,0).
故答案为(1)(16,3),(32,0),(2)(2n,3),(2n+1,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按次变化规律再将△OA3B3变换成△OA4B4,则A4的坐标是(16,3)
(16,3)
,B4的坐标是(32,0)
(32,0)
.
(2)若按第(1)题找到的规律将△OAB进行了n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标是(2n,3)
(2n,3)
.Bn的坐标是(2n+1,0)
(2n+1,0)
.
考点:坐标与图形性质.专题:规律型.分析:(1)对于A1,A2,An坐标找规律可将其写成竖列,比较从而发现An的横坐标为2n,而纵坐标都是3,同理B1,B2,Bn也一样找规律.
(2)根据第一问得出的A4的坐标和B4的坐标,再此基础上总结规律即可知A的坐标是(2n,3),B的坐标是(2n+1,0).解答:解:(1)因为A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,
同时横坐标都和2有关,为2n,那么A4(16,3);
因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,
同时横坐标都和2有关为2n+1,那么B的坐标为B4(32,0);
(2)由上题第一问规律可知An的纵坐标总为3,横坐标为2n,Bn的纵坐标总为0,横坐标为2n+1,
∴A的坐标是(2n,3),B的坐标是(2n+1,0).
故答案为(1)(16,3),(32,0),(2)(2n,3),(2n+1,0).
展开全部
从A、A1、A2、A3中可以看到,其y坐标不变,x坐标分别为2的0次方,2的1次方,2的2次方,2的3次方,可以推出An的坐标为(2的n次方,3)
从B、B1、B2、B3中可以看到,其y坐标不变,x坐标分别为2的1次方,2的2次方,2的3次方,2的4次方,可以推出Bn的坐标为(2的n+1次方,0)
所以(1)A4坐标为(16,3)B4坐标为(32,0)
(2)An的坐标为(2的n次方,3)Bn的坐标为(2的n+1次方,0)
从B、B1、B2、B3中可以看到,其y坐标不变,x坐标分别为2的1次方,2的2次方,2的3次方,2的4次方,可以推出Bn的坐标为(2的n+1次方,0)
所以(1)A4坐标为(16,3)B4坐标为(32,0)
(2)An的坐标为(2的n次方,3)Bn的坐标为(2的n+1次方,0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,
∴An(2n,3);
∵B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,横坐标都和2有关为2n+1,
∴B的坐标为Bn(2n+1,0);
故答案为:(2n方,3);(2(n+1方),0).
∴An(2n,3);
∵B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,横坐标都和2有关为2n+1,
∴B的坐标为Bn(2n+1,0);
故答案为:(2n方,3);(2(n+1方),0).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是(16,3)
(16,3)
,B4的坐标是(32,0)
(32,0)
;
(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标是(2n,3)
(2n,3)
,Bn的坐标是(2n+1,0)
(2n+1,0)
.
(16,3)
,B4的坐标是(32,0)
(32,0)
;
(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标是(2n,3)
(2n,3)
,Bn的坐标是(2n+1,0)
(2n+1,0)
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)观察每次变换前后三角形有何变化,找规律,按此规律再将三角形 OA3B3 变换成 OA4B4,则A4的坐标为_____,B4的坐标为____.
(2)若按(1)题找到的规律,将三角形进行n次变换,得到三角形OAnBn,比较每次变换中的坐标变化规律,推测An的坐标是____,Bn的坐标是____.
A4(16,3)B4(32,0)
An((-2)^n,(-1)^n*3)
Bn((-2)^n*2,0)
(2)若按(1)题找到的规律,将三角形进行n次变换,得到三角形OAnBn,比较每次变换中的坐标变化规律,推测An的坐标是____,Bn的坐标是____.
A4(16,3)B4(32,0)
An((-2)^n,(-1)^n*3)
Bn((-2)^n*2,0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询