Black-Scholes期权定价模型的模型内容

 我来答
曰饮亡何
2016-05-13 · 超过50用户采纳过TA的回答
知道答主
回答量:180
采纳率:20%
帮助的人:51万
展开全部

1、股票价格随机波动并服从对数正态分布;
2、在期权有效期内,无风险利率和股票资产期望收益变量和价格波动率是恒定的;
3、市场无摩擦,即不存在税收和交易成本;
4、股票资产在期权有效期内不支付红利及其它所得(该假设可以被放弃);
5、该期权是欧式期权,即在期权到期前不可实施;
6、金融市场不存在无风险套利机会;
7、金融资产的交易可以是连续进行的;
8、可以运用全部的金融资产所得进行卖空操作。 C=S·N(d1)-X·exp^(-r·T)·N(d2)
其中:
d1=[ln(S/X)+(r+σ^2)/2)T]/(σ√T)
d2=d1-σ·√T
C—期权初始合理价格
X—期权执行价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率
σ—股票连续复利(对数)回报率的年度波动率(标准差)
N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:
第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。
第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式