在平面直角坐标系中,圆OC与Y轴相切,且C点坐标为(1,0),直线L过点A(-1,0)

与圆C相切于点D,求直线L的解析式... 与圆C相切于点D,求直线L的解析式 展开
笑年1977
2010-12-04 · TA获得超过7.2万个赞
知道大有可为答主
回答量:2.2万
采纳率:81%
帮助的人:1.2亿
展开全部
设直线L的方程为:y=kx+b
因为过点A,则代入方程得
-k+b=0 b=k
所以直线L方程化为y=kx+k 1

,圆OC与Y轴相切,且C点坐标为(1,0),
所以圆的方程(x-1)^2+y^2=1 2
1式代入2式得
x^2-2x+1+(kx+k)^2=1
x^2-2x+1+k^2x^2+2k^2x+k^2=1
(1+k^2)x^2+(2k^2-2)x+k^2=0
因为相切,所以有两个同的实数根,
即△=(2k^2-2)^2-4*(1+k^2)*k^2=0
4k^4-8k^2+4-4k^2-4k^4=0
12k^2=4
k^2=1/3
k=√3/3 或 k=-√3/3
所以直线L的解析式是 y=√3/3(x+1) 或 y=-√3/3(x+1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式