已知等式:cos261°+sin231°+cos61°sin31°=acos220°+sin210°-cos20°sin10°=a.(1)根据以上所给
已知等式:cos261°+sin231°+cos61°sin31°=acos220°+sin210°-cos20°sin10°=a.(1)根据以上所给的等式写出一个具有一...
已知等式:cos261°+sin231°+cos61°sin31°=acos220°+sin210°-cos20°sin10°=a.(1)根据以上所给的等式写出一个具有一般性的等式,并指出实数a的值;(2)证明你所写的等式.
展开
1个回答
展开全部
(1)∵cos261°+sin231°+cos61°sin31°=a,
cos220°+sin210°-cos20°sin10°=a,
∴cos261°+sin2(61°-30°)+cos61°sin(61°-30°)=a,
cos220°+sin2(20°-30°)+cos20°sin(20°-30°)=a
由此猜测有:cos260°+sin230°+cos60°sin30°=a,即得a=
,
则一般性结论为cos2α+sin2(α-30°)+cosαsin(α-30°)=
;
(2)证明:cos2α+sin2(α-30°)+cosαsin(α-30°)
=cos2α+(sinαcos30°-cosαsin30°)2+cosα(sinαcos30°-cosαsin30°)
=cos2α+
sin2α-
sinαcosα+
cos2α+
sinαcosα-
cos2α
=
(sin2α+cos2α)=
,
则cos2α+sin2(α-30°)+cosαsin(α-30°)=
.
cos220°+sin210°-cos20°sin10°=a,
∴cos261°+sin2(61°-30°)+cos61°sin(61°-30°)=a,
cos220°+sin2(20°-30°)+cos20°sin(20°-30°)=a
由此猜测有:cos260°+sin230°+cos60°sin30°=a,即得a=
3 |
4 |
则一般性结论为cos2α+sin2(α-30°)+cosαsin(α-30°)=
3 |
4 |
(2)证明:cos2α+sin2(α-30°)+cosαsin(α-30°)
=cos2α+(sinαcos30°-cosαsin30°)2+cosα(sinαcos30°-cosαsin30°)
=cos2α+
3 |
4 |
| ||
2 |
1 |
4 |
| ||
2 |
1 |
2 |
=
3 |
4 |
3 |
4 |
则cos2α+sin2(α-30°)+cosαsin(α-30°)=
3 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询